A Cofixpoint Combinator for Mixed Recursive-Corecursive Functions

Jannis Limperg

University of Freiburg
Department of Computer Science
Chair of Programming Languages
Adviser: Peter Thiemann

Submitted 10 May 2017
Contents

1 Introduction .. 3

2 Background .. 5
 2.1 Coinduction and Corecursion 5
 2.2 Sized Types ... 6
 2.3 Well-founded Recursion 8
 2.4 Containers and M-Types 11

3 Cofixpoint Construction 14
 3.1 Simple Cofixpoint .. 14
 3.2 Cofixpoint with Well-founded Recursion 15
 3.3 Fixpoint Equation .. 18

4 Generalisation to Indexed Types 20
 4.1 Indexed Containers and M-types 20
 4.2 Cofixpoint Combinator 22

5 Application: Trace Languages of Session Types 25

6 Limitations .. 29

7 Related Work .. 30

8 Conclusion .. 31
1 Introduction

Consider the following problem: Define a function, \(\text{runs} \), which takes as input an infinite stream of numbers. Its output should be the stream of all strictly decreasing runs of numbers in the input, such that for example

\[
\text{runs} \ [0, 3, 2, 1, 3, 3, \ldots] = [[0], [3, 2, 1], [3], \ldots].
\]

In partial functional languages, say Haskell \([34, 22]\), this is easily accomplished via an auxiliary function \(\text{runs}' \):

\[
\text{runs}' : : [\text{Nat}] -> \text{Stream Nat} -> \text{Stream [Nat]}
\]

\[
\text{runs}' \ \text{run} \ (x : y : xs) = \begin{cases}
\text{if } y < x & \text{then } \text{runs}' (\text{run ++ [x]}) \ (y : xs) \\
\text{else } (\text{run ++ [x]}) : \text{runs}' \ [] \ (y : xs)
\end{cases}
\]

\(\text{runs}'\) takes the current run as its first argument. It then checks whether the first two elements of the input stream are part of the same run. If so, it adds the first element to the current run and recurses; otherwise it finishes up the current run, predending it to the output stream, and recurses with a new empty run. Appending single elements to the end of a list (\(++ \ [_]\)) is inefficient, but this does not concern us. Given this definition, \(\text{runs}\) is simply \(\text{runs}' \ [])\).

Unfortunately, our definition of \(\text{runs}'\) is unacceptable in current total functional languages. Since \(\text{runs}'\) produces an infinite data structure, it must be defined by corecursion, and such definitions must be productive. Informally, this means that the evaluation of any finite prefix of \(\text{runs}' \ \text{xs}\) must terminate (for all \(\text{xs}\)) or, in other words, that we only ever have to wait a finite amount of time until the next element of the output stream is available \([36]\).

Languages which strive for totality – usually in order to maintain consistency as a logic under the Curry-Howard-de Bruijn isomorphism \([17, 20, 27]\) – must check productivity statically. And since productivity checking is undecidable, languages rely upon heuristics which reject some productive programmes. The most common of these heuristics is the guardedness condition \([16, 24]\), which essentially requires that corecursive calls in a function body appear only as direct arguments to a constructor of a coinductive data type.

\(\text{runs}'\) is a victim of the incompleteness of the guardedness condition because in the \(\text{then}\) branch, the recursive call does not appear under a constructor, and therefore is not guarded. In contrast, the \(\text{else}\) branch is fine because the recursive call is a direct argument of the : stream constructor.

Yet, despite its inadmissibility, \(\text{runs}'\) is indeed productive: For any input stream, we can only take the \(\text{then}\) branch a finite number of times, at most until we reach zero. Then we must take the \(\text{else}\) branch, which produces an element of the output stream before recursing. Therefore, the next element of a stream starting with the number \(n\) is always produced after at most \(n + 1\) recursion steps, and thus in finite time.

Hence, the question is: How do we define \(\text{runs}'\) and functions like it in such a way that the language can recognise them as productive? We call these functions mixed
Because they contain both a recursive and a corecursive component, in the recursive component, self-referential calls are justified by a termination argument; in the case of \(\text{runs}' \), we count down towards zero while recursing over the stream in the then branch. In the corecursive component, self-referential calls are justified by guardedness like in the else branch. ([12] makes these notions more precise.)

In this paper, we develop a technique that allows mixed recursive-corecursive functions to be defined with relative ease, without altering the productivity checker or type system. Our main contribution is a cofixpoint combinator that forms the greatest fixed point of an open recursive function while allowing that function to recurse in two different ways: By guarded corecursion, as in the else branch of \(\text{runs}' \), and by well-founded recursion \([8, 31, 10]\). The latter generalises the idea that the then branch can only be taken a finite number of times because the head of the stream passed to \(\text{runs}' \) always decreases.

In the end (Sec. 3), our definition of \(\text{runs}' \) will look very roughly like this:

\[
\text{runs}'F \quad : : \quad ([\text{Nat}] \rightarrow \text{Stream Nat} \rightarrow \text{Stream [Nat]}) \\
\rightarrow \quad ([\text{Nat}] \rightarrow \text{Stream Nat} \rightarrow \text{Stream [Nat]}) \\
\rightarrow \quad [\text{Nat}] \rightarrow \text{Stream Nat} \rightarrow \text{Stream [Nat]}
\]

\[
\text{runs}'F \text{ rec corec run (x : y : xs)} = \begin{cases} \\
\text{then rec (run :'} x) (y : xs) \\
\text{else (run :'} x) : \text{corec []} (y : xs) \\
\end{cases}
\]

\[
\text{runs'}' \quad : : \quad [\text{Nat}] \rightarrow \text{Stream Nat} \rightarrow \text{Stream [Nat]}
\]

\[
\text{runs'}' = \text{cofixWf runs'}F
\]

\(\text{runs}'F \) is an open recursive functional corresponding to \(\text{runs}' \), so the recursive calls in both branches have been replaced by arguments \text{rec} and \text{corec}. The first stands for a well-founded recursive call, the second for a guarded corecursive call. \text{cofixWf} then “ties the knot”, forming the greatest fixed point of \(\text{runs}'F \), which is precisely \(\text{runs}' \). And since \text{cofixWf} will be a regular function, it will ensure that all functions defined in terms of it are productive.

We implement our \text{cofixWf} in Agda (version 2.5.2) \([2]\), a total functional language with dependent types. The remainder of this paper is generated from a literate Agda file, so all coloured code listings are typechecked. However, we take some liberties reusing names and hiding incidental details (with all omitted definitions and proofs available in this paper’s source code). Familiarity with Agda and the commonly used parts of its standard library (version 0.13) \([39]\) is assumed, but we will explain some of the more esoteric details. This paper is accompanied by an Agda library called wellfounded-coind \([28]\) which fully elaborates the ideas presented herein. For simplicity, we specialise all definitions to the universes \text{Set} and \text{Set}, in the paper; the library contains fully universe-polymorphic definitions.

*1We will call greatest fixed points ‘cofixpoint’ to distinguish them from least fixed points. ‘recursive’ will refer to either (a) any self-referential definition, whether it is justified by structural and well-founded recursion or corecursion; or (b) more specifically only structural and well-founded recursion as opposed to corecursion. The context will make it clear which meaning is intended.
In the remainder of this text, we will first review the necessary background on coin-
duction and corecursion in Agda (2.1), sized types (2.2), well-founded recursion (2.3)
and M-types (2.4). Then we will proceed to define \texttt{cofixWf} for non-indexed data types
(3) and prove its fixpoint equation (3.3). After that, a generalisation of \texttt{cofixWf} to
indexed families of data types (4) and an extended example concerning the generation of
trace languages from session types (5) are presented. Finally, we discuss the limitations
of our approach (6) and compare it with related work (7).

2 Background

2.1 Coinduction and Corecursion

In the context of programming languages and type theory, coinductive data types are tra-
ditionally thought of as potentially-infinite constructor trees [16, 24]. They can be used
to represent a variety of useful data structures: guaranteed-infinite streams, potentially-
infinite (“lazy”) lists, potentially-infinite trees, and so on.

In this paper, however, we use a subtly different characterisation of coinductive
types, discovered by Abel and Pientka [5] and implemented in recent versions of Agda.
It emphasises the destructors, or observations, that a coinductive type allows. For ex-
ample, observing a stream yields an element (the stream’s ‘head’) and another stream
(its ’tail’). As such, coinductive types resemble processes which can be queried for in-
formation. Consequently, coinductive types are not defined by constructors, but rather
by how each value responds to all possible observations.

For example, consider the type of streams:

\begin{verbatim}
record Stream (A : Set) : Set where
 coinductive
 field
 head : A
 tail : Stream A
\end{verbatim}

A record is a one-constructor data type, and the constructor has the given fields (here:
head and tail). Declaring the record as coinductive enables the construction of infinite
values by corecursion, which we will see momentarily. It also forbids pattern matching
on values of the record, rendering Streams’s constructor positively useless.

Observations of record types are defined by copatterns [7]. A copattern (technically:
destructor copattern) has the form \texttt{p :proj} \(x_1 \ldots x_n\), where \(p\) is a pattern (potentially
containing other copatterns) and \texttt{proj} is the name of a record field, which may be applied
to arguments \(x_1\) through \(x_n\) \((n \geq 0)\). An equation with left hand side \texttt{p :proj} \(x_1 \ldots x_n\)
then defines the value of \texttt{proj} \(y \ x_1 \ldots x_n\) whenever \(y\) matches \(p\).

To illustrate, let us define the stream of natural numbers with a given starting point:

\begin{verbatim}
naturalsFrom : ℕ → Stream ℕ
naturalsFrom \(n\) .head = \(n\)
naturalsFrom \(n\) .tail = naturalsFrom (suc \(n\))
\end{verbatim}

The first equation defines the head of \(naturalsFrom \(n\)\) (for any \(n\)), the second the tail.
naturalsFrom is defined corecursively: A self-referential call appears in the right-hand side of the second clause, but in contrast with definitions by structural recursion, integersFrom need not be applied only to structurally smaller arguments in its own body. In Sec. 2.2, we explore the conditions under which a corecursive call is admissible in more detail.

One question remains: How do we define coinductive sum types, like trees, when records only have one constructor? In this paper, we do so by forming the greatest fixed point of a functor, with the latter implemented as a non-recursive sum type. For example, the following type Tree represents unlabeled potentially-infinite binary trees:

```
data TreeF (Tree : Set) : Set where
tip : TreeF Tree
branch : Tree → Tree → TreeF Tree
```

record Tree : Set where
coinductive
field force : TreeF Tree

Observing a Tree via force yields a TreeF which we can analyse to determine whether it is a tip or a branch, and to obtain the subtrees in the latter case. An alternative way to construct coinductive types, which we do not use, is by mutually defining a coinductive record and an inductive data type; for an example, see [4].

2.2 Sized Types

As mentioned in the introduction, Agda must enforce that all recursive functions terminate and all corecursive functions are productive. Intuitively, a corecursive definition is productive if observing it only ever takes a finite amount of time (or evaluation steps) \[36]. In other words, every observation terminates.

The traditional way to ensure this is the guardedness condition \[16, 24]. It essentially stipulates that in a function defined by corecursion, recursive calls may only appear directly under a constructor of a coinductive data type. But this is obviously not applicable to the system of coinduction discussed above, which effectively gets rid of coinductive constructors entirely.

For this reason, among others which will become apparent later, we use sized types \[6, 2\], another recent addition to Agda.

Agda’s implementation of sized types first defines a few new primitives. Size : SizeUniv (where SizeUniv is a new universe) is the type of sizes and may for most purposes be thought of as a natural number or infinity. \[\uparrow s : Size\] is the successor of size \(s\). Size< s : SizeUniv is the type of sizes less than \(s\), and \(\infty : Size\) is a size such that \(s : Size< \infty\) holds for every \(s\). Sizes cannot be pattern matched on, so for a given size \(s\), it is impossible to determine whether or not it is of the form \(\uparrow t\) for some \(t\); this restriction is required for consistency \[2\].

Sizes are not treated specially by Agda’s type checker except for some intuitive subtyping rules. In particular, \(s : Size< t\) implies both \(s : Size< (\uparrow t)\) and \(s : Size\). Indeed, Size may be regarded as an abbreviation for Size< \(\infty\).
Given this vocabulary for sizes, Agda’s termination checker is extended in a straightforward manner: A function which takes a size argument \(s \) is recognised as terminating if recursive calls take only smaller sizes \(t : \text{Size} < s \) as arguments.

We must thus design our inductive data types such that recursive function definitions gain access to sizes which justify termination. This can be done by adding a size parameter (or index) to a regular data type, with the understanding that this parameter represents an upper bound on the height of a particular value’s constructor tree. For example, sized lists are defined as follows:

\[
\text{data List} \,'
\ (s : \text{Size}) (A : \text{Set}) : \text{Set} \ where
\begin{align*}
\text{nil} & : \text{List} \ s A, \\
\text{cons} & : \forall \ {t : \text{Size} < s} \to A \to \text{List} \ t A \to \text{List} \ s A
\end{align*}
\]

The tree height of \(\text{nil} \) is zero, so any size is an (inclusive) upper bound. \(\text{cons} \ x \ xs \) adds one constructor on top of \(\xs \), so \(s \) is an upper bound on its tree height if \(t < s \) is an upper bound on \(\xs \).

Given this definition, recursion on the size of a list emulates structural recursion. For example, \(\text{map} \) can be defined as follows:

\[
\begin{align*}
\text{map–List} \ : & \forall \ {s A B} \to (A \to B) \to \text{List} \ s A \to \text{List} \ s B \\
\text{map–List} \ ' \ (s) \ f \ \text{nil} & = \text{nil} \\
\text{map–List} \ (s) \ f \ (\text{cons} \ t \ xs) & = \text{cons} \ (f \ x) \ (\text{map–List} \ t \ f \ xs)
\end{align*}
\]

This definition’s termination is justified independently by the familiar structural recursion and a size-based termination argument. For the latter, consider the second clause: \(\text{map–List} \) is called recursively only at size \(t \), and by the type of \(\text{cons} \), we know that \(t : \text{Size} < s \); thus, the recursive call is acceptable. Here and in the following, we only give explicit size arguments for clarity; Agda would be able to infer them.

So far, we have not gained much by using size-based termination. To demonstrate a situation where it comes in handy, consider the type of finitely branching trees:

\[
\text{data Tree} \ (s : \text{Size}) (A : \text{Set}) : \text{Set} \ where
\begin{align*}
\text{tip} & : \text{Tree} \ s A, \\
\text{node} & : \forall \ {t : \text{Size} < s} \to A \to \text{List} \ \infty (\text{Tree} \ t A) \to \text{Tree} \ s A
\end{align*}
\]

Again, we define the mapping operation:

\[
\begin{align*}
\text{map–Tree} \ & : \forall \ {s A B} \to (A \to B) \to \text{Tree} \ s A \to \text{Tree} \ s B \\
\text{map–Tree} \ (s) \ f \ \text{tip} & = \text{tip} \\
\text{map–Tree} \ (s) \ f \ (\text{node} \ t \ xs) & = \text{node} \ (f \ x) \ (\text{map–List} \ (\text{map–Tree} \ t \ f) \ xs)
\end{align*}
\]

This definition is accepted although \(\text{map–Tree} \) is not structurally recursive and would be rejected without the size typing: In the right-hand side of the second clause, \(\text{map–Tree} \) is not applied to a subterm of the input tree. Yet we know that the list \(\ts \) only contains trees which are strictly smaller than the input (via the typing of \(\text{node} \)), so we can use \(\text{map–Tree} \) at size \(t \), justifying termination. This is a typical example of how higher-order functions (here \(\text{map–List}' \)) become usable due to size typing.
Let us now turn our attention towards coinductive types. Here, we identify the size of a sized type with an upper bound on its observation depth, which is the number of projections that may be applied to it. For example, sized streams are defined as follows:

\[
\text{record Stream } (s : \text{Size}) (A : \text{Set}) : \text{Set where} \\
\text{coinductive} \\
\text{field} \\
\text{head} : A \\
\text{tail} : \forall \{t : \text{Size}< s\} \to \text{Stream } t \ A
\]

If a stream has observation depth \(s = 0\), we cannot give a \(t : \text{Size}< s\) to \text{tail}, so the tail cannot be observed. For \(s \geq 1\), we get back a tail which permits a strictly smaller number of observations than the original stream. A stream with finite observation depth may thus be regarded as partially defined.

This setup has a remarkable consequence for productivity checking. We had already mentioned that productivity may be understood as the ability to evaluate every observation in finite time. The combination of coinductive records and sized types realises this intuition by reducing productivity checking to termination checking: In definitions by corecursion, arguments to recursive calls must be strictly decreasing, just as in definitions by structural or size-based recursion. This guarantees that every observation terminates. Consider the familiar stream of naturals:

\[
\text{naturalsFrom} : \forall \{s\} \to \mathbb{N} \to \text{Stream } s \mathbb{N} \\
\text{naturalsFrom } \{s\} n \ .\text{head} = n \\
\text{naturalsFrom } \{s\} n \ .\text{tail } \{t\} = \text{naturalsFrom } \{t\} (\text{suc } n)
\]

In the second clause, the typing of \text{tail} ensures that \(t : \text{Size}< s\), so recursive calls only happen on smaller sizes, convincing the termination checker that the definition as a whole terminates.

2.3 Well-founded Recursion

With termination checking being an undecidable problem, Agda’s termination checker must rely on heuristics in its assessment of whether any particular function terminates, rejecting some valid programmes. The basic principle is that functions must be structurally recursive, meaning that recursive calls must only be performed on subterms of the original function arguments. Even though various extensions to the checker relax this restriction \([3]\), and sized types permit abstraction over syntactic details, it is still challenging to define many, even “obviously” terminating, functions.

Well-founded recursion \([8, 31, 10]\) is an established technique to overcome these difficulties, and is available in Agda’s standard library under the \text{Induction} namespace. It is an abstraction defined within the language, and therefore does not expand the set of functions expressible in Agda. Still, defining non-structurally recursive functions in terms of well-founded recursion is often more convenient than fighting the termination checker on foot.
Technically, the main ingredient of well-founded recursion is an accessibility predicate \texttt{Acc} on elements of a carrier set \(A \), parameterised by a relation \(_<_\)\(^{2}\).

An element \(x \) of \(A \) is accessible wrt. \(_<_\) iff any \(y < x \) is also accessible:

\[
\forall \{ x \} \rightarrow (\forall y \rightarrow y < x \rightarrow \texttt{Acc} _<_ y) \rightarrow \texttt{Acc} _<_ x
\]

Since \(\texttt{Acc} \) is inductively defined, a proof of \(\texttt{Acc} _<_ x \) implies that there can be no infinite decreasing chain \(x > x_1 > x_2 > \ldots \) starting at \(x \); for otherwise there would have to be an infinite chain of \(\texttt{Acc} \) constructors.

A relation \(_<_\) : \(\texttt{Rel} \ A \) is well-founded iff every element of \(A \) is accessible wrt. \(_<_\):

\[
\forall \{ A \} \rightarrow \texttt{Rel} \ A \rightarrow \texttt{Set}
\]

\[
\texttt{Well–founded} _<_ = \forall x \rightarrow \texttt{Acc} _<_ x
\]

Now consider a function \(f : A \rightarrow B \) such that within the body of \(f x \), recursive calls to \(f \) only take arguments \(y < x \). Then \(f \) must terminate since otherwise, we would have an infinite descending chain \(x > y > \ldots \) of arguments to recursive calls, which well-foundedness prohibits. Usefully, we can formalise this insight in Agda, defining the fixpoint combinator \(\texttt{fixWf} \)\(^{3}\).

\[
\texttt{module} _ \{ A B : \texttt{Set} \} \{ _<_ : \texttt{Rel} \ A \}
\]

\[
(F : (x : A) \rightarrow ((y : A) \rightarrow y < x \rightarrow B) \rightarrow B)
\]

\[
\texttt{where}
\]

\[
\texttt{fixWf}' : (x : A) \rightarrow \texttt{Acc} _<_ x \rightarrow B
\]

\[
\texttt{fixWf}' x (\texttt{acc} \ rs) = F x (\lambda y y<x \rightarrow \texttt{fixWf}' y (rs y y<x))
\]

\[
\texttt{fixWf} : \texttt{Well–founded} _<_ \rightarrow A \rightarrow B
\]

\[
\texttt{fixWf} \leftarrow \texttt{wf} f x = \texttt{fixWf}' x (\leftarrow \texttt{wf} f x)
\]

\(F \) is an open recursive functional whose second argument stands in for recursive calls. Its type ensures that arguments \(y \) to these calls are strictly smaller than \(F \)'s input, \(x \). Operationally, \(\texttt{fixWf}' \) implements the fixpoint equation \(\texttt{fixWf}' F x = F x (\texttt{fixWf}' F) \), modulo the bookkeeping required for the accessibility predicate. \(\texttt{fixWf}' \) is recognised as terminating because it is structurally recursive in its second argument.

With this combinator in hand, we are able to define non-structurally recursive functions by writing them in open recursive form and proving that arguments to recursive calls always decrease. Which relation to use usually follows directly from an informal termination argument, though it can sometimes be tricky to prove well-foundedness. Luckily, there are combinators which allow for modular well-foundedness proofs \[^{33}\].

We will use one of them momentarily.

\(^{2}\)Despite the choice of name, \(_<_ \) need not be an order.

\(^{3}\)\(\texttt{Rel} \ A \) is an abbreviation for \(A \rightarrow A \rightarrow \texttt{Set} \).

\(^{3}\)The form \texttt{module} _ _ where introduces an anonymous module. Its definitions are added to the enclosing scope when leaving the module block. In effect, all definitions within the anonymous module are parameterised by the module parameters. This is similar to Coq’s sections.
As an example, consider a close relative to \texttt{runs} from the introduction: \texttt{firstRun}, which extracts the first run of decreasing numbers from a stream (using the sized streams from Sec. 2.2). A direct formulation of this function is rejected by the termination checker:

\begin{verbatim}
{-# NON_TERMINATING #-}
firstRun' :: List NAT -> Stream \infty NAT -> List NAT
firstRun' run xs with head (tail xs) <? head xs
... | yes _ = firstRun' (run ::' head xs) (tail xs)
... | no _ = run ::' head xs

firstRun :: Stream \infty NAT -> List NAT
firstRun = firstRun' []
\end{verbatim}

\texttt{_<?_} is a decision procedure for the \texttt{_<_} relation, meaning that \(x <? y\) returns either \texttt{yes} \(p\) with \(p : x < y\) or \texttt{no} \(np\) with \(np : x \not< y\). \texttt{::'} appends a single element to a list. \texttt{firstRun'} is obviously not structurally recursive: Recursing over the infinite stream does no good for termination.

In order to convince the termination checker, we must first identify a well-founded relation on streams which decreases on recursive calls of \texttt{firstRun'}. The following relation \texttt{<<_}, which compares the heads of two streams, fits the bill:

\begin{verbatim}
<-_ = \lambda x y . \texttt{_<_ on head}
\end{verbatim}

To prove that \texttt{<<_} is well-founded, we first note that the less-than relation on natural numbers is trivially well-founded. Using one of Paulson’s combinators \cite{paulson}, here called \texttt{wf-inverse-image}, it is then easy to prove \texttt{<<_ well-founded}.

\begin{verbatim}
<-_ : Well-founded _<_

wf-inverse-image : \forall \{ A B \} \{ _<_ : Rel B \} \{ f : A -> B \}
> Well-founded _<_
> Well-founded (_<_ on f)

<-_ = wf-inverse-image <-wf
\end{verbatim}

Now we need to define the open recursive functional corresponding to \texttt{firstRun'}. The functional can take only one argument while \texttt{firstRun'} requires two, so we need to use a pair combining the two arguments. (Alternatively, one could define a fixpoint combinator for functions with two arguments.) Lifting our well-founded relation to these pairs requires another application of \texttt{wf-inverse-image}.

\footnote{We do not know why the \texttt{f} for \texttt{wf-inverse-image} can sometimes be inferred and sometimes not.}
The functional is then constructed by replacing all recursive calls in the body of (an uncurried version of) `firstRun'` with calls to a new argument `rec`:

```agda
firstRun'F : (x : In) → ((y : In) → y <<< x → List ℕ) → List ℕ
firstRun'F (run , xs) rec with head (tail xs) ≜ head xs
... | yes p = rec (run ::' head xs , tail xs) p
... | no _ = run ::' head xs
```

For the second argument of `rec`, we need a proof that `tail xs <<< xs`, i.e. `head (tail xs) < head xs`; but this is precisely what the decision procedure for `_<_` gives us in the first branch. Having thus defined the functional, we can take its least fixed point to obtain a function that is extensionally equal to our first formulation of `firstRun'`.

```agda
firstRun' : List ℕ → Stream ∞ ℕ → List ℕ
firstRun' run xs = fixWf firstRun'F <<<¬wf (run , xs)
```

2.4 Containers and M-Types

The last preliminary question we must address is how to abstract over coinductive data types. Our fixpoint combinator will be similar to `fixWf` from Sec. 2.3, but it will be defined by corecursion. Therefore, it must construct a coinductive type; and we must know which type because we need access to its destructors. Hence, we need a data type which can represent any coinductive type definable in Agda.

To obtain a data type which can represent all coinductive types, we view coinductive types as greatest fixed points over functors. We may then define a coinductive type `CoFix : (Set → Set) → Set` which, given a functor `F : Set → Set` provided by the user, yields a type whose destructors we know and which we can therefore construct corecursively.

However, Agda throws a (well-justified) spanner in the works and does not accept the following simple definition, popularised among functional programmers by *Data types à la carte* [37]:

```agda
{-# NO_POSITIVITY_CHECK #-)
record CoFix (F : Set → Set) : Set where
coinductive
  field unfold : F (CoFix F)
```
This definition is rejected because, for consistency, recursive data types must be fixed points of strictly positive functors \([\mathcal{F}]\), and there is no way to ensure that a particular \(F\) chosen by the user would be strictly positive. MiniAgda’s polarity annotations \([\mathcal{F}]\) would let us require this, but Agda does not currently support them.

Therefore, we need an encoding of the strictly positive functors. Abbott et al.’s containers \([\mathcal{F}]\) (also known as interaction structures \([\mathcal{F}]\)) provide precisely that.

A container consists of a set of shapes \(\text{Shape}\) and for each shape \(s\) a set of positions \(\text{Pos}\):}

\[
\begin{align*}
\text{record } \text{Container} & : \text{Set}, \text{ where} \\
\text{constructor } & _ \triangleleft _ \\
\text{field} & \\
\text{Shape} & : \text{Set} \\
\text{Pos} & : \text{Shape} \to \text{Set}
\end{align*}
\]

For a container \(c\), we define the extension \(\llbracket c \rrbracket\):

\[
\begin{align*}
\llbracket _ \rrbracket & : \text{Container} \to \text{Set} \to \text{Set} \\
\llbracket \text{Shape} \triangleleft \text{Pos} \rrbracket & = \lambda X \to \Sigma \text{Shape} \ (\lambda s \to \text{Pos} s \to X)
\end{align*}
\]

\(\llbracket c \rrbracket\) is a functor, as witnessed by the following mapping operation:

\[
\begin{align*}
\text{map} & : \forall \ (A \ B) \ c \to (A \to B) \to \llbracket c \rrbracket A \to \llbracket c \rrbracket B \\
\text{map} \ (_ \triangleleft _) \ f \ (\text{shape} \ , \ xs) & = \text{shape} \ . \ f \ \circ \ xs
\end{align*}
\]

\(\text{map}\)’s definition reflects the common intuition that mapping over a functor changes its “contents” but not its “shape”. It is easy to see that \(\text{map}\) fulfils the functor laws.

Remarkably, any strictly positive functor is isomorphic to the extension of some container \([\mathcal{F}]\) Corollary 6.1]. For simple functorial data types, say \(\mathcal{F} : (A : \text{Set}) \to \text{Set}\), the translation is quite mechanical: \(\text{Shape}\) indexes \(\mathcal{F}\)’s constructors, including any data they contain apart from occurrences of \(A\). \(\text{Pos}\) indexes, for a constructor \(s\), the occurrences of \(A\). For example, consider the functor \(\text{ListF} A\) whose least fixed point are the lists over \(A\):

\[
\begin{align*}
\text{data } \text{ListF} \ (A : \text{Set}) & \ (\text{List} : \text{Set}) \ : \text{Set} \text{ where} \\
\[] & : \text{ListF} A \ \text{List} \\
_ : : \ : A \to \text{List} \to \text{ListF} A \ \text{List}
\end{align*}
\]

There is a bijection (modulo functional extensionality) between \(\text{ListF}\) and the following container functor. The bijection’s implementation illustrates how shape and positions correspond to constructors and their arguments.\(^6\)

\[
\begin{align*}
\text{ListC} & : \text{Set} \to \text{Container} \\
\text{ListC} \ A & = \text{Shape} \triangleleft \text{Pos}
\end{align*}
\]

\(^6\)In the definition of \(\text{ListC}\), the form \text{module ListC where} acts like a \text{where} clause which additionally defines the module \(\text{ListC}\) containing \(\text{Shape}\) and \(\text{Pos}\). The form \(\lambda ()\) in \(\text{ListF} \to \text{ListF'}\) is an anonymous function which eliminates the absurd type \(\bot\).
module ListC where

data Shape : Set where
 nil : Shape
 cons : A → Shape

Pos : Shape → Set
Pos nil = ⊥
Pos (cons _) = ⊤

ListF' : Set → Set → Set
ListF' A = [] List A]

ListF→ListF' : ∀ (A List) → ListF A List → ListF' A List
ListF→ListF' [] = ListC.nil . λ()
ListF→ListF' (x :: xs) = ListC.cons x , λ_ → xs

ListF'→ListF : ∀ (A List) → ListF' A List → ListF A List
ListF'→ListF (ListC.nil , _) = []
ListF'→ListF (ListC.cons x , xs) = x :: xs tt

Now we can define the sized greatest fixed point over arbitrary containers, and thus a uniform representation of every non-indexed coinductive data type expressible in Agda. This fixed point is called an M-type after the related category-theoretic notion [41].

record M (c : Container) (s : Size) : Set where
 constructor m
 coinductive
 field inf : ∀ {t : Size< s} → [] (M c t)

open M public

M is almost identical to the coinductive record from our earlier attempt at defining a universal cofixpoint type that ran afoul of the strict positivity condition. But in this case, we may expand the definition of [], yielding the following type of M’s single constructor:

 m : (∀ t : Size< s) → Σ (Shape c) (λ s → Pos c s → M c t)) → M c s

This makes it obvious that M does not appear to the left of any arrow in the type of m’s argument – regardless of which container we choose – and so M is strictly positive.

We may now construct coinductive data structures, like possibly-infinite lists, as greatest fixed points over container functors:

List∞ : Set → Size → Set
List∞ A = M (ListC A)

As an example of how to work with them, we implement the usual mapping operator:
Apart from some syntactic overhead, the definition is exceedingly similar to the usual formulation of mapping on (lazy) lists.

In the following, we occasionally use a “weak head normal form” of M-types:

\[
\text{Wnfn : Container }\rightarrow\text{ Size }\rightarrow\text{ Set}
\]

\[
\text{Wnfn } c\ s = \llbracket c \rrbracket (M\ c\ s)
\]

One may picture this as a potentially infinite structure whose first part – a layer of the \(\llbracket c \rrbracket\) functor – is immediately accessible. For streams, this is a pair of an element and a stream. The terminology is due to Danielsson [18].

As noted above, our M-type cannot be used to represent coinductive indexed families such as coinductive relations. This requires an update to indexed containers, which we postpone until Sec. 4.

3 Cofixpoint Construction

3.1 Simple Cofixpoint

Before considering how to integrate well-founded recursion, it will be instructive to implement a regular cofixpoint combinator which we can later extend. Our solution, which is explained in detail below, reads as follows:

\[
\text{cofix : } \forall \{ s\ c\ \} \{ A:\ Set \}
\]

\[
\rightarrow (F:\ \forall \{ t\}
\rightarrow (A\rightarrow M\ c\ t)
\rightarrow A
\rightarrow \text{Wnfn } c\ t)
\rightarrow A
\rightarrow M\ c\ s)
\]

\[
\text{cofix } s\ F\ x\ .\ \text{inf } t = F\ t\ (\text{cofix } t\ F)\ x
\]

Operationally, \text{cofix} implements the usual fixpoint equation, “replacing” the open recursion in the functional \(F\) with a recursive call to \text{cofix} \(F\).

More interesting is the typing that makes Agda’s termination checker accept this definition, and in particular the type of \(F\). Receiving as input an element of \(A\) and the ability to recurse, producing an \(M\ c\ t\), it must return a \text{Wnfn} \(c\ t\). Thus, it must add one observation – one layer of the \(\llbracket c \rrbracket\) functor – to the recursive call if it performs one. This guarantee is achieved by abstracting over the size \(t\) of the participating data types, and it reflects precisely the restrictive form of guarded corecursion.

The size typing also makes the termination checker accept this definition: Via the type of \text{inf}, we know that \(t : \text{Size} < s\), and \text{cofix} is only called recursively at size \(t\). Hence, sized types are crucial to our technique.
As an example of how to use \texttt{cofix}, we reimplement \texttt{map\texttt{-Listoo}}. Compared to the direct implementation in Sec. 2.4, almost no changes are required.\footnote{However, the input list has size \texttt{\infty}, and so the fact that \texttt{map\texttt{-Listoo}} is size-preserving is not reflected in its type. There is a variant of \texttt{cofix} which allows us to keep the more precise type, but since a cofixpoint combinator which integrates well-founded recursion – the target of this development – cannot be size-preserving anyway, we will not go into more detail on this.}

\begin{verbatim}
module _ [A B] (f : A → B) where

 map-Listoo'F : ∀ {t}
 → (Listoo A ∞ → Listoo B t)
 → Listoo A ∞ → Whnf (ListC B) t

 map-Listoo'F map-Listoo' xs with inf xs
 ... | ListC.nil , _ = ListC.nil , λ()
 ... | ListC.cons x , xs' = ListC.cons (f x) , λ_ → map-Listoo' (xs' tt)

 map-Listoo' : ∀ {s} → Listoo A ∞ → Listoo B s
 map-Listoo' = cofix map-Listoo'F

3.2 Cofixpoint with Well-founded Recursion

We can now extend our cofixpoint combinator with well-founded recursion. The central idea is to give the functional \(F \) two different ways to recurse: either corecursively, as above, or by decreasing a well-founded relation. Again, we show the construction before explaining it:

\begin{verbatim}
module _

 [A : Set] {c : Container}
 [<_ : Rel A] (<-wf : Well-founded _<_)
 (F : ∀ {t}
 → (x : A)
 → (A → M c t)
 → ((y : A) → y < x → Whnf c t)
 → Whnf c t)

where

 cofixWf' : ∀ {s} → (x : A) → Acc _<_ x → M c s
 cofixWf' {s} x (acc rs) .inf {t}
 = F {t} x
 (λ y → cofixWf' {t} y (<-wf y))
 (λ y y<x → inf (cofixWf' {s} y(rs y<y) {t}))

 cofixWf : ∀ {s} → A → M c s
 cofixWf x = cofixWf' x (<-wf x)
\end{verbatim}

The type of \(F \) has changed to accommodate a new option for recursion: In addition to a function of type \(A → M c t \) – the corecursive part, which we already discussed above
–, it receives a function of type \((y : A) \rightarrow y < x \rightarrow \text{Whnf} \ c \ t \). This function represents a well-founded recursive call and thus requires its argument to be less than \(F \)'s input wrt. _<_. It returns an unfolded M-type which \(F \) can return directly, so the functional does not need to specify the returned value’s next observation.

Operationally, the corecursive part remains the same, except for the proof of accessibility of \(y \) which we thread through. The size typing still works out because we only call \(\text{cofixWf' at size} \ t \).

For the recursive part, we add a new recursive call on the last line of \(\text{cofixWf'} \). It works like the recursive call in our fixpoint combinator for well-founded recursion: Since we know \(y \) to be less than the original input \(x \), we can recurse structurally on the accessibility predicate \(\text{acc} \ rs \).

Since we need to unroll the result in order to return the unrolled M-type, we call \(\text{cofixWf' at size} \ s \). The existence of a \(t : \text{Size}< s \) proves that \(s \) is at least one, which justifies observing the M-type via \(\text{inf} \). But this implies that we call \(\text{cofixWf'} \) recursively at the same size, \(s \), it was originally called with, which does not, by itself, justify termination.

Still, the function terminates because at each recursive call, either the size argument decreases (in the corecursive case) or it remains the same and we recurse structurally into the accessibility predicate. This is a lexicographic termination measure, which Agda’s termination checker \([3]\) is able to recognise.

With our new cofixpoint combinator in hand, we return to the example from the introduction. Recall that the function \(\text{runs} \) is supposed to extract a stream of decreasing runs from a stream of numbers. It is defined in terms of a helper function \(\text{runs'} \) whose naive definition would not satisfy Agda’s termination checker:

\[
\text{runs'} :: \mathbb{Nat} \rightarrow \text{Stream } \mathbb{Nat} \rightarrow \text{Stream } [\mathbb{Nat}]
\]

\[
\text{runs'} \run (x : y : xs) = \begin{cases}
 \text{if } y < x \\
 \text{then } \text{runs'} (\run ++ [x]) (y : xs) \\
 \text{else } (\run ++ [x]) : \text{runs'} [] (y : xs)
\end{cases}
\]

To tackle the problem, we first define sized streams in terms of M-types, along with some utility functions.

\[
\text{StreamC} : \mathbb{Set} \rightarrow \text{Container}
\]

\[
\text{StreamC} A = A \triangleleft (\lambda _ \rightarrow \mathbb{T})
\]

\[
\text{Stream} : \mathbb{Set} \rightarrow \text{Size} \rightarrow \mathbb{Set}
\]

\[
\text{Stream} A = \text{M } (\text{StreamC} A)
\]

\[
\text{StreamWhnf} : \mathbb{Set} \rightarrow \text{Size} \rightarrow \mathbb{Set}
\]

\[
\text{StreamWhnf} A = \text{Whnf } (\text{StreamC} A)
\]

\[
\text{head} : \forall \{ A s \} \{ t : \text{Size}< s \} \rightarrow \text{Stream } A s \rightarrow A
\]

\[
\text{head } xs = \text{proj}_1 (\text{inf } xs)
\]
Like firstRun'F from Sec. 2.3, runs' takes two arguments which we must combine into a pair. The well-founded relation which recursive calls decrease is the same as for firstRun'F.

In : Set
In = List ℕ × Stream ℕ ∞

<<<< : Rel In
<<<< = _<_ on (head * proj2)

<<<<-wf : Well-founded _<<<<_
<<<<-wf = wf−inverse−image <−wf

Now we can define a functional which has the form required by cofixWf:

runs'F : ∀ {t} → (x : In)
→ (In → Stream (List ℕ) t)
→ ((y : In) → y <<<< x → StreamWhnf (List ℕ) t)
→ StreamWhnf (List ℕ) t

runs'F (run , xs) corec rec with head (tail xs) <? head xs
... | yes p = rec (run :′ head xs , tail xs) p
... | no np = consWhnf (run :′ head xs) (corec ([] , tail xs))

The recursive call in the yes branch has been replaced by a call to the argument rec, signifying a call justified by well-founded recursion. Like in firstRun'F, the proof that its argument is less than the original input according to _<<<<_ follows directly from the conditional. Meanwhile, the recursive call in the no branch has been replaced by corec, which can only be used because it is “guarded” by consWhnf.

runs' is then simply the greatest fixed point of runs'F, and runs is defined in terms of it.

runs' : In → Stream (List ℕ) ∞
rungs = cofixWf <<<<−wf runs'F

runs : Stream ℕ ∞ → Stream (List ℕ) ∞
runs xs = runs' ([], xs)
3.3 Fixpoint Equation

Proving facts about functions which use our cofixpoint combinator does not, for the most part, require any special infrastructure: Proofs by coinduction generally construct coinductive relations (for example bisimulations), and the indexed version of our combinator can be used to help with these constructions if required (see Sec. [4]).

However, we can provide one ingredient which simplifies proofs about \texttt{cofixWf}-based definitions. The characteristic fixpoint equation for \texttt{cofixWf} holds almost by definition, but not quite: Reducing \texttt{cofixWf} replaces the recursive calls in the functional \(F \) with calls to \texttt{cofixWf'} rather than \texttt{cofixWf}. This is a significant obstacle for recursive or corecursive proofs about any \texttt{cofixWf}-based function, since these proofs have to incorporate a lemma about \texttt{cofixWf'}.

For this reason, we wish to prove that \texttt{cofixWf} is a proper fixed point combinator. The following fixpoint equation expresses this:

\[
\texttt{cofixWf} - \texttt{unfold} : \forall (x : A) \\
\rightarrow \text{inf} (\texttt{cofixWf} \leftarrowWF F x) \\
\equiv F x \leftarrowWF (\lambda y \rightarrow \text{inf} (\texttt{cofixWf} \leftarrowWF F y))
\]

The proof of \texttt{cofixWf}--\texttt{unfold} is quite similar to that of the corresponding fixpoint equation for \texttt{fixWf}-based well-founded recursion [10]. Like the latter, it requires an additional extensionality property of \(F \):

\[
\texttt{F-ext} : \forall x \{ f \ f' \ g \ g' \} \\
\rightarrow (\forall y \rightarrow f y \equiv f' y) \\
\rightarrow (\forall y y<x \rightarrow g y y<x \equiv g' y y<x) \\
\rightarrow F x f g \equiv F x f' g'
\]

where

The two hypotheses state that \(f \) is extensionally equal to \(f' \) and \(g \) to \(g' \). If that is the case, \(F x f g \) should be equal to \(F x f' g' \). This follows immediately from functional extensionality, and hence every \(F \) has this property; but since functional extensionality cannot be proven in Agda, we must either postulate it or prove \(F-ext \) manually for relevant functionals \(F \).

Given \(F-ext \), we may prove that the \texttt{Acc} argument to \texttt{cofixWf'} is irrelevant:

\[
\texttt{cofixWf'}-\texttt{Acc}-\text{irrelevant} : \forall \{ acc \ acc' \ : \texttt{Acc} \ _<_ x \} \\
\rightarrow \text{inf} (\texttt{cofixWf'} \leftarrowWF F x acc) \\
\equiv \text{inf} (\texttt{cofixWf'} \leftarrowWF F x acc') \\
\texttt{cofixWf'}-\texttt{Acc}-\text{irrelevant} (acc rs) (acc rs') \\
= F-ext _ \\
(\lambda _ \rightarrow \text{refl}) \\
(\lambda y y<x \rightarrow \texttt{cofixWf'}-\texttt{Acc}-\text{irrelevant} (rs y y<x) (rs' y y<x))
\]

This allows us to prove the desired \texttt{cofixWf}--\texttt{unfold}:

\[
\texttt{cofixWf} - \texttt{unfold} : \forall x \\
\rightarrow \text{inf} (\texttt{cofixWf} \leftarrowWF F x)
\]

18
≡ \(F x (\text{cofixWf} \leftarrow w f \ F) (\lambda y _ \to \text{inf} (\text{cofixWf} \leftarrow w f \ F y)) \)
\(\text{cofixWf}\text{-unfold } x \text{ with } (\leftarrow w f \ x)\)
... | (acc rs)
\(= F\text{-ext }_
\)(\(\lambda y _ \to \text{refl}\))
\(\lambda y y<_x \to \text{cofixWf'}\text{-Acc-irrelevant } (rs \ y _y<_x) (\leftarrow w f \ y))\)

Applying \(\text{cofixWf}\text{-unfold},\) we may verify that \(\text{runs'}\) is extensionally equal to the version we would write in a partial language. To do so, we first define the expected runtime behaviour:

\(\text{runs'}\text{-body} : \text{List } \mathbb{N} \times \text{Stream } \mathbb{N} \to \text{Stream } (\text{List } \mathbb{N}) \to\)
\(\text{runs'}\text{-body} (\text{run} , xs) \text{ with } \text{head } (\text{tail } xs) _? \text{ head } xs\)
... \(\mid \text{yes } _ = \text{runs'} (\text{run }_ : _ \text{ head } xs , \text{tail } xs)\)
... \(\mid \text{no } _ = \text{cons} (\text{run }_ : _ \text{ head } xs) (\text{runs'} ([], \text{tail } xs))\)

\(\text{cofixWf}\text{-unfold}\) then allows us to prove that observing the result of \(\text{runs'}\) is the same as observing the result of \(\text{runs'}\text{-body}\) for any input.

\(\text{runs'}\text{-unfold}_1 : \forall \text{run }xs\)
\(\to \text{inf} (\text{runs'} (\text{run } , xs)) \equiv \text{inf} (\text{runs'}\text{-body } (\text{run} , xs))\)
\(\text{runs'}\text{-unfold}_1 \text{run }xs\)
\(\text{rewrite }\text{cofixWf}\text{-unfold }\leftarrow w f \text{runs'}F \text{runs'}\text{-ext } (\text{run} , xs)\)
\(\text{with } \text{head } (\text{tail } xs) _? \text{ head } xs\)
... \(\mid \text{yes } _ = \text{refl}\)
... \(\mid \text{no } _ = \text{refl}\)

The third argument to \(\text{cofixWf}\text{-unfold}, \text{runs'}\text{-ext},\) is a routine proof of the extensionality property \(F\text{-ext}\) specialised to \(\text{runs'}F.\)

\(\text{runs'}\text{-unfold}_1 \) is useful because it allows us to treat \(\text{runs'}\) as a regular recursive function which we can unfold without ever having to deal with \(\text{cofixWf}\) – but only under an observation via \(\text{inf},\) which is cumbersome in practice. Ideally, we would like to prove a stronger statement:

\(\text{runs'}\text{-unfold}_2 : \forall \text{run }xs \to \text{runs'} (\text{run } , xs) \equiv \text{runs'}\text{-body } (\text{run} , xs)\)

This would allow us to unfold \(\text{runs'}\) regardless of the surrounding context.

Alas, this proposition is, to our knowledge, not provable in Agda. In general, for two inhabitants \(r_1, r_2\) of a coinductive record with fields \(f_1 \ldots f_n,\) we cannot conclude \(r_1 \equiv r_2\) from \(\bigwedge_{i=1}^n (f_i, r_1 \equiv f_i, r_2)\) because pattern matching on coinductive records is not allowed.

However, we conjecture that this relationship between equality of coinductive records and equality of their fields may be added as an axiom without introducing inconsistency. The rationale is similar to that for functional extensionality: Two inhabitants of a record can only be distinguished by observing them, so if all possible observations are equal, the inhabitants are interchangeable in any context. Hence, we postulate the following for \(M:\)

postulate

\[M\text{-Extensionality} : \forall \{c\ s\} \{t : \text{Size}<s\} \{x\ y : M\ c\ s\} \rightarrow \inf x \equiv \inf y \rightarrow x \equiv y \]

This allows us to simplify \(\text{runs'—unfold_1} \):

\[
\begin{align*}
\text{runs'—unfold_2} : & \forall \text{run xs} \rightarrow \text{runs'} (\text{run}, \text{xs}) \equiv \text{runs'}—\text{body} (\text{run}, \text{xs}) \\
\text{runs'—unfold_2} \text{run xs} = & M\text{-Extensionality} (\text{runs'—unfold_1} \text{run xs})
\end{align*}
\]

We stress that our development does not require the use of \(M\text{-Extensionality} \). As an alternative, it is always possible to prove, for any function \(f \) which takes an M-type as its argument, that \(\inf x \equiv \inf y \) implies \(f x \equiv f y \). However, for convenience, we assume \(M\text{-Extensionality} \) in the remainder of this text.

4 Generalisation to Indexed Types

As mentioned, our general coinductive type \(M \) can only represent non-indexed data types. While this is sufficient for many purposes, we would also like to use \(\text{cofixWf} \) when constructing indexed types such as coinductively defined relations. This section therefore generalises our previous results to the indexed case, reusing the names for brevity.

4.1 Indexed Containers and M-types

Going from regular to indexed \(M \) means going from regular to indexed containers \[28\]. While the former represent strictly positive functors, the latter represent strictly positive indexed functors. Indexed containers are defined as follows:

```record Container (I : Set) : Set₁ where
  constructor _<__/_<\_/>_<\_/>
  field
    Shape : I → Set
    Pos : ∀ {i} → Shape i → Set
    next : ∀ {i} → (c : Shape i) → Pos c → I
```

The extension of an indexed container is an indexed functor, i.e. a function between sets indexed by \(I \):

\[
\begin{align*}
__ & : \forall \{I\} \rightarrow \text{Container} \ 0 \text{→} \text{Set} \rightarrow (I \rightarrow \text{Set}) \rightarrow (I \rightarrow \text{Set}) \\
__ & \text{Shape} \text{Pos} / \text{next} \ 0 \text{→} \text{Set} \rightarrow \text{Set} \rightarrow \text{Set} \\
& = \Sigma (\text{Shape} \ i) (\lambda s \rightarrow (p : \text{Pos} \ s) \rightarrow X \ (\text{next} \ s \ p))
\end{align*}
\]

Like with non-indexed containers, the extension is a pair whose first element is a \(\text{Shape} s \), which may be thought of as a constructor (if the functor was defined as a regular indexed data type). The second element is a function which returns, for each position \(p \) in \(\text{Pos} \ s \), a member of the indexed input set \(X \). Its index is determined by \(\text{next} \), and can depend on both the shape and the position.
Indexed M-types are sized greatest fixed points over container functors:

\[
\text{Indexed M-types are sized greatest fixed points over container functors:}
\]

\[
\text{record } M \{ I \} \ (c : \text{Container } I) \ (s : \text{Size}) \ (i : I) : \text{Set where}
\]

\[
\text{coinductive}
\]

\[
\text{field } \text{inf} : \forall \{ t : \text{Size} \} \to \| c \| (M c t) i
\]

\[
\text{Whnf} : \forall \{ I \} \to (\text{Container } I) \to \text{Size} \to I \to \text{Set}
\]

\[
\text{Whnf } c \ s \ i = \| c \| (M c s) i
\]

To represent families with multiple indexes, choose the product of the index sets for \(I \).

By choosing the nullary product, \(\top \), we obtain a non-indexed M-type.

As an example, we define the predicate \(\text{All} \) in terms of the indexed \(M \).

Given a \(P : A \to \text{Set} \), \(\text{All} \) is a predicate on \(A \)-streams which holds iff every element of a stream satisfies \(P \).

\[
\text{All} : \forall \{ A \} \to (A \to \text{Set}) \to \text{Size} \to \text{Stream } A \to \text{Set}
\]

\[
\text{All } P = M (\text{AllC } P)
\]

Again, \(\text{Shape} \) encodes constructors and their non-recursive fields – here just one, which contains a proof that \(\text{head} \ xs \) satisfies \(P \). \(\text{Pos} \) enumerates recursive positions, of which there is precisely one. \(\text{next} \) gives the recursive position’s index, which is \(\text{tail} \ xs \) because we desire a proof of the statement \(\text{All} \ P \ (\text{tail} \ xs) \). The similarity to our stream definition from Sec. 3 is no coincidence, since \(\text{All} \) is effectively a stream of proofs.

To get a feeling for the definition, we implement a few utility functions which will be needed later.

\[
\text{module } _\{ A \} \{ P : A \to \text{Set} \} \{ \text{xs : Stream } A \to \text{Set} \} \text{ where}
\]

\[
\text{All–head} : \forall \{ s \} \{ t : \text{Size} \} \to \text{All} \ P \ s \ \text{xs} \to P \ (\text{head} \ \text{xs})
\]

\[
\text{All–head } \text{all} = \text{proj1} \ (\text{inf} \ \text{all})
\]

\[
\text{All–tail} : \forall \{ s \} \{ t : \text{Size} \} \to \text{All} \ P \ s \ \text{xs} \to \text{All} \ P \ t \ (\text{tail} \ \text{xs})
\]
All–tail \(all = \text{proj}_2 \ (\text{inf} \ all) \ \text{tt} \)

\[
\begin{align*}
\text{All–cons} & : \forall \{s\} \to P \ (\text{head} \ x s) \to \text{All} \ P \ (\text{tail} \ x s) \to \text{All} \ P \ (\uparrow s) \ x s \\
\text{All–cons} p–\text{head} & p–\text{tail} \ . \text{inf} = p–\text{head} \ , \ \lambda _ \to p–\text{tail}
\end{align*}
\]

4.2 Cofixpoint Combinator

With indexed M-types defined, we proceed to construct an indexed version of \textit{cofixWf}.

\[
\begin{align*}
\text{module} & \quad \{I : \text{Set}\} \ {\{c : \text{Container } I\}} \ {\{In : \text{Set}\}} \\
& \quad \{<__ : \text{Rel } In\} \ (\text{<-wf} : \text{Well–founded } _<_) \\
& \quad \{Ix : In \to I\} \\
& \quad (F : \forall \{t\} \\
& \quad \to (x : In) \\
& \quad \to ((y : In) \to M \ c \ t \ (Ix \ y)) \\
& \quad \to ((y : In) \to y < x \to \text{Wlfnf } c \ t \ (Ix \ y)) \\
& \quad \to \text{Wlfnf } c \ t \ (Ix \ x)) \\
\text{where} & \\
& \quad \text{cofixWf}' : \forall \{s\} \to (x : In) \to \text{Acc } _<_ \ x \to M \ c \ s \ (Ix \ x) \\
& \quad \text{cofixWf}' \ x \ (\text{acc } rs) \ . \text{inf} \\
& \quad \quad = F \ x \\
& \quad \quad (\lambda \ y \to \text{cofixWf}' \ y \ (\text{<-wf } y)) \\
& \quad \quad (\lambda \ y \ y < x \to \text{inf} \ (\text{cofixWf}' \ y \ (\text{rs } y < x))) \\
& \quad \text{cofixWf} : (x : In) \to M \ c \ \infty \ (Ix \ x) \\
& \quad \text{cofixWf} \ x = \text{cofixWf}' \ x \ (\text{<-wf } x)
\end{align*}
\]

Operationally, \text{cofixWf}' and \text{cofixWf} work exactly like their non-indexed variants. The only difference is in the types, where we must supply indexes. We make these dependent upon the input (via \(I x \)) to support the use case where our output is a proof of a statement about the input. The example below illustrates this mechanism.

The indexed \textit{cofixWf} also admits a fixpoint equation which we omit here because it is completely analogous to the non-indexed version.

To demonstrate the indexed \textit{cofixWf}’s utility, we shall prove a simple lemma about \textit{runs}, namely that its output contains only elements from the input. Before being able to state this proposition, we must define some preliminary notions.

A list is an element of a stream iff we can find it in a finite prefix of said stream:

\[
\begin{align*}
\text{data } _\in_ \ A : A \to \text{Stream } A \ \infty \to \text{Set where} \\
& \quad \text{here} : \forall \{xs\} \to \text{head } xs \in xs \\
& \quad \text{later} : \forall \{x \ xs\} \to x \in \text{tail } xs \to x \in xs
\end{align*}
\]

A list is a sublist of a stream iff every element of the list is also an element of the stream. For simplicity, we disregard the order of elements.
A stream is a substream of another stream iff every element of the first stream is also an element of the second stream (again disregarding order).

Now we can formulate the lemma we wish to prove: all lists in \(\text{runs} \) \(x_s \) should be sublists of \(x_s \).

An attempt to prove this lemma directly will, however, get stuck. We must generalise the lemma to \(\text{runs}' \), which yields the following goal:

This statement admits a proof by coinduction whose structure precisely mirrors that of \(\text{runs}' \). But this means that we must use \texttt{cofixWf} since the body of \(\text{runs}' - \text{CL} \) will contain recursive calls justified by well-founded induction.

Hence, we must define a functional corresponding to \(\text{runs}' - \text{CL} \). This is a little more complicated than for the cases we have seen before because there are more inputs. Of these, \(y_s \) can remain constant in \(\text{runs}' - \text{CL} \)'s body, but all other inputs take on different values in the recursive calls. Therefore, we define a compound input data type containing all of them:

A suitable well-founded relation for \(\text{In} \) is defined in the familiar manner:
Now we are ready to define the functional for \textit{runs'}–\texttt{CL}. Since the proof requires some work, we break up the definition into parts.

\begin{verbatim}
Ix : \forall \{ys\} \to In ys \to Stream (List \texttt{=} \infty
Ix (build–In xs run _ _) = runs' (run , xs)

\end{verbatim}

\texttt{Ix} defines the object of interest – the stream generated by \textit{runs'} – given a particular input. In the functional, it is used as the index of the \texttt{All} \texttt{M}-type. Recall that we introduced the dependency between index and input in order to enable predicates over the input to be proven; \textit{runs'}–\texttt{CLF} is an example of this.

\begin{verbatim}
runs'–CLF : \forall ys \{t\}
 \to (x : In ys)
 \to ((y : In ys) \to All (_ \texttt{CL} ys) t (Ix y))
 \to ((y : In ys) \to y <<< x \to AllWhnf (_ \texttt{CL} ys) t (Ix y))
 \to AllWhnf (_ \texttt{CL} ys) t (Ix x)
\end{verbatim}

The first order of business is replacing \textit{runs'} with \textit{runs'}–\texttt{body}. To do so, we use a lemma \texttt{go} (to be defined momentarily) and, using \textit{runs'}–\texttt{unfold2}, replace the reference to \textit{runs'}–\texttt{body} in its type by \textit{runs'}. \texttt{cast} is a helper function which lets us use a value of type \textit{A} where something of type \textit{B} is required, provided that \textit{A} \equiv \textit{B}.

\begin{verbatim}
go : AllWhnf (_ \texttt{CL} ys) t (runs'–body (run , xs))
go with head (tail xs) <<< head xs
 \ldots | yes _ = rec (build–In (tail xs)
 (run ::' head xs)
 sub–tail–xs
 sub–run')
 \ldots | no _ = sub–run'
 , _ \to corec (build–In (tail xs) [] sub–tail–xs tt)

sub–tail–xs : tail xs \subseteq ys

sub–run' : (run ::' head xs) \texttt{CL} ys
\end{verbatim}

\texttt{sub–tail–xs} and \texttt{sub–run'} are simple lemmas whose implementations we omit. The meat of the proof is in \texttt{go}, which mirrors the structure of \textit{runs'}:

- In the \texttt{yes} case, \textit{runs'}–\texttt{body (run , xs)} is equal to \textit{runs'} (\textit{run} ::' \texttt{head} , tail \texttt{xs}) by conversion. Hence, we need to prove that all lists in the latter stream are sublists of \textit{ys}. This is achieved by recursing with the corresponding inputs; the recursive call is justified by well-founded recursion in the familiar manner.

\footnote{It should be possible to perform this replacement using Agda's built-in rewriting, but this does not work in the current version of Agda (2.5.2). We suspect an error in the rewriting implementation.}
• In the no case, \(\text{runs'} - \text{body} (\text{run}, xs) \) is equal to \(\text{cons} (\text{run} ;' \text{ head} xs) (\text{runs'} ([], \text{tail} xs)) \). Hence, we can build the first element of the All stream – a proof that \(\text{run} ;' \text{ head} xs \) is a sublist of \(ys \) – before recursing into the tail of \(xs \). The corecursion is justified by “guardedness”.

Having thus constructed \(\text{runs'} - \text{CLF}, \text{runs} - \text{CL} \) is simply a matter of taking the fixed point and providing the correct input.

\[
\begin{align*}
\text{runs} - \text{CL} &: \forall xs \to \text{All} (_\text{CL} xs) \to (\text{runs} xs) \\
\text{runs} - \text{CL} xs &= \text{cofix} Wf \lll \text{wf} (\text{runs'} - \text{CLF} xs) (\text{build} - \text{In} xs []) \subseteq \text{refl} \text{ tt}
\end{align*}
\]

\(\subseteq \text{refl} \) is a lemma stating that the substream relation is reflexive.

5 Application: Trace Languages of Session Types

Session types are a typing discipline for the description of communication protocols, originally developed by Honda et al. [26, 38]. We roughly follow the presentation of Gay and Vasconcelos [23], assuming a type of messages \(B \) and a type of variables \(\text{Var} \), both equipped with a decidable equality relation. Additionally, we introduce a tag to identify the sending or receiving end of a two-way communication.

\[
\text{postulate}
\begin{align*}
B \, \text{Var} &: \text{Set} \\
\text{\&}M &: (x \, y : B) \to \text{Dec} (x \equiv y) \\
\text{\&}V &: (x \, y : \text{Var}) \to \text{Dec} (x \equiv y)
\end{align*}
\]

\[
\text{data} \, \text{Tag} : \text{Set where}
\begin{align*}
\text{Sender} \, \text{Receiver} &: \text{Tag}
\end{align*}
\]

Session types are then defined by the following data type \(S \):\(^9\)

\[
\text{data} \, S : \text{Set where}
\begin{align*}
\text{end} &: S \\
\text{msg} &: \text{Tag} \to B \to S \to S \\
\text{branch} &: \text{Tag} \to S \to S \to S \\
\nu &: \text{Var} \to S \to S \\
\text{var} &: \text{Var} \to S
\end{align*}
\]

\text{end} denotes the end of communication. \text{msg} \(t \, m \, s \) sends or receives a message, depending on the value of the \(t \) tag, and then continues with the protocol described by \(s \). \text{branch} \(t \, l \, r \) provides a choice between protocols \(l \) and \(r \): For \(t = \text{Sender} \), a choice is offered to the communication partner, whereas \(t = \text{Receiver} \) demands that the communication partner offer a choice. \(\nu \) is a variable binder and \(\text{var} \) denotes references to these variables. \(\nu \) forms the greatest fixed point of a session type, which is a protocol \(\nu \) is usually called \(\mu \). This is a misnomer since the latter is also commonly used for least fixed point combinators, while the former generates greatest fixed points.

\(^9\)
that repeats ad infinitum. For example, \(\nu X \) (msg Sender \(b X \)) describes a process that continuously sends the message \(b \). Since the semantics of session types do not concern us much in the following, we refer to [23] for further details.

Our task is now to generate the trace language of a given session type \(s \). This is a tree containing sent and received messages in all possible branches of the protocol described by \(s \). And this tree can be infinite (because \(\nu \) forms a greatest fixed point), so it must be coinductively defined. Effectively, the trace language of \(s \) is simply \(s \) with all variables replaced by the subtree they point to, ad infinitum.

In fact, this last remark gives us an implementation strategy for the generation of trace languages. We first define a naïve substitution operation:

\[
\begin{align*}
_[\mapsto _] : S \to \text{Var} \to S \\
\text{end} & \quad \text{[} y \mapsto s' \text{]} = \text{end} \\
\text{msg } b \ t \ s & \quad \text{[} y \mapsto s' \text{]} = \text{msg } b \ t \ (s \ [y \mapsto s']) \\
\text{branch } t \ | \ l \ | \ r & \quad \text{[} y \mapsto s' \text{]} = \text{branch } t \ (l \ [y \mapsto s'] \ (r \ [y \mapsto s'])) \\
\nu \ x \ s & \quad \text{[} y \mapsto s' \text{]} \text{ with } x \triangleleft V \ y \\
\text{... } \text{[} \text{yes } _ \text{]} & = \nu \ x \ s \\
\text{... } \text{[} \text{no } _ \text{]} & = \nu \ x \ (s \ [y \mapsto s']) \\
\text{var } x & \quad \text{[} y \mapsto s' \text{]} \text{ with } x \triangleleft V \ y \\
\text{... } \text{[} \text{yes } _ \text{]} & = s' \\
\text{... } \text{[} \text{no } _ \text{]} & = \text{var } x
\end{align*}
\]

Then the trace language of a session type is defined informally as follows:

\[
\{\text{\# NON_TERMINATING \#} \} \\
\text{tr : S \to Tr} \\
\text{tr end} \quad = \text{end} \\
\text{tr (msg } t \ b \ s \text{)} \quad = \text{msg } t \ b \ (\text{tr } s) \\
\text{tr (branch } t \ | \ l \ | \ r \text{)} = \text{branch } t \ (\text{tr } l) \ (\text{tr } r) \\
\text{tr (nu } x \ s \text{)} = \text{tr } (s \ [x \mapsto \nu \ x \ s]) \\
\text{tr (var } x \text{)} = \text{undefined} \\
\text{where postulate undefined : _}
\]

The first three branches simply recurse over the session type. The \(\nu \) branch is what makes this exercise both difficult and interesting: It first replaces \(x \) by \(\nu \ x \ s \) in \(s \), then calls itself to build the trace language of the resulting session type. This makes \(\text{tr} \) a non-terminating process: While recursing into \(s \ [x \mapsto \nu \ x \ s] \), it will eventually reach \(\nu \ x \ s \) again, performing the same substitution, and repeat ad infinitum.

\(\text{tr} \) is therefore defined by corecursion. But it is not obviously productive, since the self-referential call in the \(\nu \) branch is not guarded. Indeed, there are inputs for which \(\text{tr} \) loops, such as \(\nu \ x \ (\text{var } x) \):

\[
\begin{align*}
\text{tr (nu } x \ (\text{var } x)) \\
& = \text{tr (}(\text{var } x)[\ x \mapsto \nu \ x \ (\text{var } x)]) \\
& = \text{tr (nu } x \ (\text{var } x)) \\
& = \ldots
\end{align*}
\]
To have any hope of defining \(\text{tr} \) in Agda, we must therefore exclude such inputs. We do so by stipulating that \(v \) may never be followed directly by a variable. Let \(\text{Contractive} : \mathbb{S} \rightarrow \text{Set} \) be the obvious predicate that implements this restriction.

Meanwhile, the \(\text{var} \) branch of \(\text{tr} \) is undefined. This is because only closed session types have meaningful trace languages. Hence, we define another predicate, \(\text{Closed} : \mathbb{S} \rightarrow \text{Set} \), for session types with no free variables. The definition is standard, so we omit it (along with the vast majority of proof code in the remainder of this section, which would only distract from the application of \(\text{cofixWf} \).) For our input, we then define the type of well-formed session types, which are session types that are both contractive and closed:

\[
\begin{align*}
\text{record SWf : Set where} \\
\text{constructor swf} \\
\text{field} \\
\text{s : } \mathbb{S} \\
\text{contractive : } \text{Contractive } s \\
\text{closed : } \text{Closed } s
\end{align*}
\]

Now we want to use \(\text{cofixWf} \) (in its non-indexed form) to define \(\text{tr} \), and so we must find a well-founded relation which decreases as we go from \(v \ x \ s \) to \(s [x \mapsto v \ x \ s] \). The central idea is that as we “substitute away” one \(v \), the number of \(v \) constructors at the front of the input decreases. Formally:

\[
\begin{align*}
v\text{-count} : \mathbb{S} \rightarrow \mathbb{N} \\
v\text{-count} (v \ x \ s) &= 1 + v\text{-count } s \\
v\text{-count } _ &= 0
\end{align*}
\]

\[
\begin{align*}
v\text{-expand-v-count} : \forall \{x\} s \rightarrow \text{Contractive } (v \ x \ s) \\
&\rightarrow v\text{-count } (s [x \mapsto v \ x \ s]) < v\text{-count } (v \ x \ s)
\end{align*}
\]

This observation directly gives us a well-founded relation which decreases in \(\text{tr}'s \ v \) case:

\[
\begin{align*}
\text{<<}< : \text{Rel SWf} \\
\text{<<}< &= _\text{<<}_ \text{ on } (v\text{-count } * \text{SWf}.s) \\
\text{<<}<\text{-wf} : \text{Well-founded }\text{<<}_ \\
_\text{<<}<\text{-wf} &= \text{wf } \text{-inverse-image } _\text{-wf}
\end{align*}
\]

Up to this point, we have defined trace languages only informally. We now rectify this omission, using an M-type because trace languages will be generated by \(\text{cofixWf} \). We also give some helper functions to make the following code more readable.\(^{10}\)

\[
\begin{align*}
\text{TrC : Container} \\
\text{TrC = Shape } \triangleleft \text{ Pos}
\end{align*}
\]

\(^{10}\)The form \(\lambda \text{where} \ldots \) defines an anonymous function. In the block that follows the \(\text{where} \), each line gives an equation by pattern matching on the lambda’s input(s).
module TrC where
 data Shape : Set where
 end : Shape
 msg : Tag → B → Shape
 branch : Tag → Shape

 Pos : Shape → Set
 Pos end = ⊥
 Pos (msg _) = T
 Pos (branch x) = Bool

 Tr : Size → Set
 Tr = M TrC

 TrWn : Size → Set
 TrWn s = [[TrC]] (Tr s)

 Tr−end : TrWn ∞
 Tr−end = TrC.end , λ()

 Tr−msg : ∀ {s} → Tag → B → Tr s → TrWn s
 Tr−msg t b tr = TrC.msg t b , λ _ → tr

 Tr−branch : ∀ {s} → Tag → Tr s → Tr s → TrWn s
 Tr−branch t l r = TrC.branch t , λ where
 true → l
 false → r

In Pos, the T stands for one recursive occurrence, while Bool stands for two.

With this infrastructure developed, our fixpoint combinator allows us to define trace language generation exactly as specified. However, the definition is a little obscured due to the need to provide well-formed session types to recursive calls, which we must construct out of the well-formed session types we get as input. Therefore, we extract this task to its own function, components, which also uses some auxiliary lemmas. The reader should not concern themselves too much with it, except perhaps to verify that in the v x s case we recurse into s [x → v x s].

 components : (s : SWf) →
 case SWf.s of λ where
 end → T
 (msg _ _) → SWf
 (branch _ _) → SWf × SWf
 (v _ _) → SWf
 (var _ _) → T
 components (swf end _ _) = tt
 components (swf (msg t b s) (msg s−contr) (msg s−closed))
 = swf s s−contr s−closed

28
components (swf (branch t l r) (branch l—contr r—contr)
 (branch l—closed r—closed))
 = swf l—contr l—closed , swf r r—contr r—closed
components (swf (v x s) contr@(v _ s—contr) closed @(v s—closed))
 = swf (s [x \mapsto v x s])
 (subst—preserves—Contractive s—contr contr)
 (subst—preserves—Well—Scoped s—closed closed)
components (swf (var x) _) = tt

trF : \forall \{t\}
 \to (x : SWf)
 \to (SWf \to Tr t)
 \to (\forall y \to y \lll x \to TrWnf t)
 \to TrWnf t
trF (swf end _) corec rec = Tr—end
trF s@(swf (msg t b s') _) corec rec
 = Tr—msg t b (corec (components s))
trF s@(swf (branch t l r) _) corec rec
 = Tr—branch t
 (corec (proj1 (components s)))
 (corec (proj2 (components s)))
trF s@(swf (v x s') contr@(v _ _) (v _)) corec rec
 = rec (components s) (v—expand—v—count s’ contr)
trF (swf (var x) _) (var ()))

tr = cofixWf \lll \neg wf trF

trF now follows the familiar pattern: The first branch is non-recursive, while the next two add new observations to the returned trace language and can therefore corecursive. The \(v\) case recurses; the recursive call’s second argument is a proof that \(s [x \mapsto v x s]\) has less \(v\) constructors at the front than \(v x s\). The last case is impossible since the input session type is closed.

As a final note, there is nothing specific to session types about this technique for turning a tree with “backreferences” into an infinite tree. Generalising from binary trees to rose trees would let us generate a coinductive representation of arbitrary graphs [35] from an inductive, finite one.

6 Limitations

The main drawback of an M-type-based approach is the use of M-types: They introduce significant conceptual overhead and require users of our library to structure their data types in a particular fashion. Using containers also adds moderate ergonomic issues because Agda’s goal simplification heuristic often yields unsatisfying results, expanding too much or too little of an M-type’s definition. If Agda supported MiniAgda’s polarity annotations, these issues would be less severe since we could replace containers with
concrete functors.

As already mentioned in Sec. 3.3, the fixpoint equation for \texttt{cofixWf} is also suboptimal since it requires either the use of an additional axiom or somewhat cumbersome workarounds.

All of these issues could be avoided by specialising both \texttt{cofixWf} and its fixpoint equation to particular coinductive types, avoiding the need for M-types and container functors. This may be the more economical choice for users who only have to deal with few different coinductive types. It would also be possible, though not entirely straightforward, to generate such specialised cofixpoint combinators by metaprogramming.

Sized types play a central role in our development, which prevents us from porting our library to systems lacking comparable features, especially Coq [40].

7 Related Work

Bertot and Komendantskaya describe a general technique for encoding mixed recursive-corecursive functions like \texttt{runs} [12], which Bertot had used earlier to define a filtering function on streams [11]. Their central idea is to define two special-purpose predicates per function: one inductive predicate characterising the recursive component of a mixed recursive-corecursive function, and one coinductive predicate characterising the corecursive component. The mixed function is then defined by recursing structurally over the inductive predicate and nesting this recursion in a guarded corecursive definition. The authors give a (metatheoretical) algorithm for separating the recursive and corecursive parts of a function and constructing the predicates.

Compared to our cofixpoint combinator, this means greater effort for users, since they have to apply the algorithm to their particular problem by hand. In contrast, our combinator separates recursive and corecursive components of a function mostly automatically; users only have to provide a justification for the well-founded recursive calls. However, the predicate technique is advantageous for some partial corecursive functions, i.e. functions which are defined only for some of their possible inputs. In these cases, the admissible inputs may have to be defined via a nested inductive-coinductive predicate anyway, and recursing over the predicate is then the most straightforward solution.

Matthews [29], Di Gianantonio and Miculan [21], and Charguéraud [15] develop cofixpoint combinators based on complete ordered families of equivalences (cofes) or the closely related notion of converging equivalence relations. These require the user to supply a cofe for their coinductive data types and prove that their recursive functions respect the cofe, which we claim is significantly harder than providing a well-founded relation for the recursive component of a mixed recursive-corecursive function. It is unclear whether the cofe approach is able to accommodate more functions than our combinator, but at least all non-partial examples from the referenced papers can be defined using \texttt{cofixWf}.

Matthews and Charguéraud additionally use non-constructive axioms in their developments. This leads to a more ergonomical treatment of partial corecursive functions, but prevents computation with the defined functions.
Danielsson describes a trick to get around the limits of guarded corecursion using embedded languages [18]. Operations on coinductive data structures are added to these structures as additional constructors, so streams for example gain a ZipWith constructor representing a zipping operation. These extended data structures are then interpreted by a nested recursive/corecursive function. Danielsson’s technique is orthogonal to ours since it is chiefly concerned with allowing corecursive calls guarded by arbitrary functions (rather than constructors). We use sized types for this purpose, which were not available when Danielsson developed his solution.

Capretta [14], Danielsson [19], and Abel and Chapman [4] have used the Delay, or Partiality, monad to separate the definition of a function from its termination proof. The type Delay A is coinductively defined, and observing it results in either a value of A or another value of Delay A – which means that no A need ever be returned. As such, Delay can be used to represent general recursive functions. It is then possible to give a separate proof that observing some x : Delay A yields a y : A, which corresponds to termination of the computation that produced x and simultaneously provides its result.

We can also use Delay to define corecursive functions which are not obviously productive. But extracting an infinite value constructed by such a function seems impossible since we are unable to obtain finite prefixes of the value – and in contrast to an inductively defined function, the computation is never intended to terminate, which would give us access to the entire value. Therefore, this technique is not applicable to the problem we address.

Blanchette, Popescu and Traytel [13] implement a framework for corecursion and coinduction in Isabelle/HOL [30] that includes special support for mixed recursive-corecursive functions. Since they operate within a logic which has no intrinsic concept of coinductive datatypes, there is not much overlap with our work.

8 Conclusion

We have developed a technique for encoding mixed recursive-corecursive functions as well as proofs by mixed recursion-corecursion, and have demonstrated its utility in two exemplary cases. Our cofixpoint combinator represents an advancement of the state of the art because where it is applicable, it is easier to use than existing solutions. At the same time, our development remains entirely constructive, though one may optionally use some conservative axioms to avoid boilerplate.

References

Zusammenfassung

In totalen funktionalen Programmiersprachen muss statisch sichergestellt werden, dass alle rekursiven Funktionen terminieren. Für corekursive Funktionen, die unendliche Datenstrukturen wie unendliche Listen oder Bäume erzeugen, gilt stattdessen die Anforderung der Produktivität: Jedes endliche Präfix einer solchen Datenstruktur – beispielsweise die ersten n Elemente einer Liste – muss sich in endlicher Zeit, das heißt in endlich vielen Evaluationsschritten, bestimmen lassen.

Um Produktivität statisch zu garantieren, verwenden die meisten totalen Sprachen guarded corecursion. Dies bedeutet, dass in einer corekursiven Funktion selbstreferentielle Aufrufe nur direkt unter dem Konstruktor eines corekursiv definierten Datentypes zulässig sind. Als Beispiel für eine Funktion, die dieser Anforderung genügt, betrachte man map über garantiert-unendliche Sequenzen (Streams).

\[
\text{map} :: \ (a -> b) -> \text{Stream} \ a -> \text{Stream} \ b
\]
\[
\text{map} \ f \ (x : xs) = f \ x : \text{map} \ f \ xs
\]

Der rekursive Aufruf von map ist ein Argument des Stream-Konstruktors :, deswegen ist diese Definition zulässig.

Guarded corecursion ist allerdings problematisch für eine Klasse von Funktionen, die wir gemischt rekursiv-corekursiv nennen. Sie zeichnen sich dadurch aus, dass sie eine terminierende Rekursion in eine unendliche Corekursion integrieren. Als Beispiel betrachte man die Funktion \(\text{runs}\), die aus einem Stream natürlicher Zahlen alle zusammenhängenden Sequenzen strikt absteigender Zahlen extrahiert. Sie lässt sich in einer partiellen funktionalen Sprache mittels folgender Hilfsfunktion definieren:

\[
\text{runs}' : \ [\text{Nat}] -> \text{Stream} \ \text{Nat} -> \text{Stream} \ [\text{Nat}]
\]
\[
\text{runs}' \ \text{run} \ (x : y : xs) = \begin{cases}
\text{then} & \text{runs}' \ (\text{run} \ ++ \ [x]) \ (y : xs) \\
\text{else} & (\text{run} \ ++ \ [x]) : \text{runs}' \ [] \ (y : xs)
\end{cases}
\]

\(\text{runs}'\) erhält als Eingabe die aktuelle strikt absteigende Sequenz und den Stream. Es testet dann, ob die ersten beiden Elemente des Streams zur gleichen Sequenz gehören. Wenn ja, wird \(x\) zur Sequenz hinzugefügt, dann rekursiert. Wenn nein, endet die aktuelle Sequenz mit \(x\) und wird dem Ausgabestream hinzugefügt, bevor \(\text{runs}'\) rekurriert. \(\text{runs}\) ist dann schlicht \(\text{runs}'\ [\].\)

Diese Definition erfüllt nicht die Anforderungen der guarded corecursion. Zwar liegt der selbstreferentielle Aufruf im else-Fall unter dem Stream-Konstruktur und ist damit akzeptabel, aber im then-Fall wird die Rekursion durch nichts “bewacht”.

Dennoch ist \(\text{runs}'\) produktiv, wie die folgenden Überlegung zeigt: Für einen Stream, der mit der natürlichen Zahl \(n\) beginnt, kann höchstens \(n\)-mal nacheinander der then-Fall auftreten, denn dann ist die Null erreicht und damit die strikt absteigende Sequenz zu Ende. Wenn dann gezwungenermaßen der else-Fall auftritt, wird ein Konstruktor zur Ausgabe hinzugefügt. Das erste Element der Ausgabe kann somit stets nach endlich vielen Evaluationsschritten – nämlich höchstens \(n + 1\) – beobachtet werden, was \(\text{runs}'\) produktiv macht.

\[12\] Alle Codebeispiele in diesem Abschnitt sind in Haskell verfasst.

Unsere Methode ist wesentlich einfacher anzuwenden als bestehende Techniken zur Kodierung gemischter rekursiv-corekursiver Funktionen. Ihre Implementation beruht allerdings auf relativ neuen Komponenten des Agda-Typsystems, insbesondere sized types.

Im Rahmen dieser Arbeit haben wir eine Agda-Bibliothek entwickelt, die unsere Technik vollständig konstruktiv formalisiert.
Erklärung

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig verfasst habe, keine anderen als die angegebenen Quellen/Hilfsmittel verwendet habe und alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen wurden, als solche kenntlich gemacht habe. Darüber hinaus erkläre ich, dass diese Abschlussarbeit nicht, auch nicht auszugsweise, bereits für eine andere Prüfung angefertigt wurde.

______________________________ ______________________________
Ort, Datum Unterschrift