Towards Complete Tree-Based Proof Search with Metavariables

Asta Halkjær From Jannis Limperg

Technical University of Denmark Vrije Universiteit Amsterdam

TCS Seminar, VU Amsterdam 19th May 2022

...without Metavariables

...without Metavariables

Underlying Logic

 Arbitrary underlying logic with set G of goals

 E.g. A ⊢ A ∨ B.

 Arbitrary set ℝ of rules R : G ↔ P(G).
 <u>Γ ⊢ A</u> <u>Γ ⊢ A ∨ B</u>
 apply or.intro_left

 Rules perform backward reasoning: "to prove G it

suffices to prove R(G)".

Problem

- Search for proofs involving only rules in \mathbb{R} .
- **Complete** wrt. \mathbb{R} : if there is a proof, it will be found.
- Motivation: search tactics like Isabelle's auto, Coq's auto, Lean's finish and soon our Aesop, etc.

...without Metavariables

Search Trees

- And/or-tree: goal nodes and rule nodes.
- To prove a goal node, prove one child rule node.
- To prove a rule node, prove all child goal nodes.
 - If zero child goals: rule proves the goal outright.

Search

- Expansion: select a goal node, apply a rule, add rule node and goal nodes.
- Search strategy determines:
 - which node to expand first (e.g. depth-first, breadth-first, best-first);
 - which rule to apply (e.g. by a user-specified priority).

Node Properties

Nodes can be in one of two final states:

- proven: we have a proof
- stuck: we'll never find a proof

Proven and stuck nodes, and their descendants, are irrelevant: we don't need to expand them any more.

Completeness

Definition

An \mathbb{R} -derivation is a proof using only rules in \mathbb{R} .

Definition

A search strategy is fair if every rule is eventually applied to every goal.

Theorem (Completeness)

Assuming a fair search strategy, if an \mathbb{R} -derivation exists for a goal G, the search will prove G.

Completeness

Theorem (Completeness)

Assuming a fair search strategy, if an \mathbb{R} -derivation exists for a goal G, the search will prove G.

Proof Outline.

- Let D be the \mathbb{R} -derivation of G.
- From D we can generate a sequence of expansions S that apply exactly the rules in D.
- Since the search strategy is fair, every expansion in this sequence will eventually be applied.
 - Except if the expansion is already irrelevant, but then the parent goal must be proven.

...without Metavariables

Overview

- Goals may contain metavariables ?x, ?y, ...
- Metavariables stand for arbitrary terms and are solved by unification.
- Allows us to express important rules:

$$\frac{P(?x)}{\exists x, P(x)} \qquad \frac{R(x, ?y) \quad R(?y, z)}{R(x, z)}$$

- Key difficulty: goals are not independent any more.
- Solution: when a metavariable is assigned, copy related goals.

Expansion

When a goal node g is expanded with a rule R which assigns metavariables $?x_1, ..., ?x_n$:

- Add a rule node r for R.
- Add the subgoals generated by R as children of r.
- For each sibling g' of a goal on the path from g to the root, if g' contains any of the ?x_i, copy g' as a child of r.

Metavariable Clusters

- Two child goals g₁, g₂ of a rule node r are directly related if they share an unassigned metavariable.
- g_1 and g_2 are related if they are in the equivalence closure of this relation.
- Call this equivalence closure a meta cluster of r.

Proven

- Goal node g is proven if at least one child rule node of g is proven.
- Rule node r is proven if all meta clusters of r are proven.
- Meta cluster c is proven if any of c's goal nodes are proven.

Stuck

Goal node g is stuck if

- all child rule nodes of g are stuck and
- we've applied every possible rule.
- Rule node r is stuck if at least one meta cluster of r is stuck.
- Meta cluster c is stuck if all of c's goal nodes are stuck.

Irrelevant

A goal node or rule node or meta cluster n is irrelevant if an ancestor of n (including n itself) is proven or stuck.

Soundness and Completeness

very WIP

- Soundness not trivial any more: need to account for copied goals; metavariable assignments from different branches need to be consistent.
- R-derivation now models an interactive proof, i.e. we transition between partial proofs and rules may assign metavariables that affect arbitrary goals.
- Confluence is probably similar.

Implementation

- Implemented in Aesop, a new proof search tactic for Lean.
- Performance seems acceptable on typical (small) examples.
- Enables best-first search without any compromises.

```
Example
```

```
variable

(R : \alpha \rightarrow \alpha \rightarrow Prop)

(R_trans : \forall x y z, R x y \rightarrow R y z \rightarrow R x z)

example : R a b \rightarrow R b c \rightarrow R c d \rightarrow R a d := by

aesop
```