
Towards Complete Tree-Based Proof
Search with Metavariables

Asta Halkjær From
Jannis Limperg

Technical University of Denmark
Vrije Universiteit Amsterdam

TCS Seminar, VU Amsterdam
19th May 2022



Tree-Based Proof Search

…without Metavariables

…with Metavariables



Tree-Based Proof Search

…without Metavariables

…with Metavariables



Underlying Logic

▶ Arbitrary underlying logic with set 𝔾 of goals
▶ E.g. 𝐴 ⊢ 𝐴∨𝐵.

▶ Arbitrary set ℝ of rules 𝑅 ∶ 𝔾 ↛ 𝒫(𝔾).
Γ ⊢ 𝐴

Γ ⊢ 𝐴∨𝐵
apply or.intro_left

▶ Rules perform backward reasoning: “to prove 𝐺 it
suffices to prove 𝑅(𝐺)”.



Problem

▶ Search for proofs involving only rules in ℝ.
▶ Complete wrt. ℝ: if there is a proof, it will be found.
▶ Motivation: search tactics like Isabelle’s auto, Coq’s

auto, Lean’s finish and soon our Aesop, etc.



Tree-Based Proof Search

…without Metavariables

…with Metavariables



Search Trees

▶ And/or-tree: goal nodes and rule nodes.
▶ To prove a goal node, prove one child rule node.
▶ To prove a rule node, prove all child goal nodes.

▶ If zero child goals: rule proves the goal outright.



Search

▶ Expansion: select a goal node, apply a rule, add
rule node and goal nodes.

▶ Search strategy determines:
▶ which node to expand first (e.g. depth-first,

breadth-first, best-first);
▶ which rule to apply (e.g. by a user-specified priority).



Node Properties

Nodes can be in one of two final states:
▶ proven: we have a proof
▶ stuck: we’ll never find a proof
Proven and stuck nodes, and their descendants, are
irrelevant: we don’t need to expand them any more.



Completeness

Definition
An ℝ-derivation is a proof using only rules in ℝ.

Definition
A search strategy is fair if every rule is eventually
applied to every goal.

Theorem (Completeness)
Assuming a fair search strategy, if an ℝ-derivation
exists for a goal 𝐺, the search will prove 𝐺.



Completeness

Theorem (Completeness)
Assuming a fair search strategy, if an ℝ-derivation
exists for a goal 𝐺, the search will prove 𝐺.

Proof Outline.
▶ Let 𝐷 be the ℝ-derivation of 𝐺.
▶ From 𝐷 we can generate a sequence of expansions

𝑆 that apply exactly the rules in 𝐷.
▶ Since the search strategy is fair, every expansion in

this sequence will eventually be applied.
▶ Except if the expansion is already irrelevant, but

then the parent goal must be proven.



Tree-Based Proof Search

…without Metavariables

…with Metavariables



Overview

▶ Goals may contain metavariables ?𝑥, ?𝑦, …
▶ Metavariables stand for arbitrary terms and are

solved by unification.
▶ Allows us to express important rules:

𝑃(?𝑥)
∃𝑥,𝑃(𝑥)

𝑅(𝑥, ?𝑦) 𝑅(?𝑦,𝑧)
𝑅(𝑥,𝑧)

▶ Key difficulty: goals are not independent any more.
▶ Solution: when a metavariable is assigned, copy

related goals.



Expansion

When a goal node 𝑔 is expanded with a rule 𝑅 which
assigns metavariables ?𝑥1, …, ?𝑥𝑛:
▶ Add a rule node 𝑟 for 𝑅.
▶ Add the subgoals generated by 𝑅 as children of 𝑟.
▶ For each sibling 𝑔′ of a goal on the path from 𝑔 to

the root, if 𝑔′ contains any of the ?𝑥𝑖, copy 𝑔′ as a
child of 𝑟.



Metavariable Clusters

▶ Two child goals 𝑔1, 𝑔2 of a rule node 𝑟 are directly
related if they share an unassigned metavariable.

▶ 𝑔1 and 𝑔2 are related if they are in the equivalence
closure of this relation.

▶ Call this equivalence closure a meta cluster of 𝑟.



Proven

▶ Goal node 𝑔 is proven if at least one child rule node
of 𝑔 is proven.

▶ Rule node 𝑟 is proven if all meta clusters of 𝑟 are
proven.

▶ Meta cluster 𝑐 is proven if any of 𝑐’s goal nodes are
proven.



Stuck

▶ Goal node 𝑔 is stuck if
▶ all child rule nodes of 𝑔 are stuck and
▶ we’ve applied every possible rule.

▶ Rule node 𝑟 is stuck if at least one meta cluster of 𝑟
is stuck.

▶ Meta cluster 𝑐 is stuck if all of 𝑐’s goal nodes are
stuck.



Irrelevant

▶ A goal node or rule node or meta cluster 𝑛 is
irrelevant if an ancestor of 𝑛 (including 𝑛 itself) is
proven or stuck.



Soundness and Completeness

▶ very WIP
▶ Soundness not trivial any more: need to account for

copied goals; metavariable assignments from
different branches need to be consistent.

▶ ℝ-derivation now models an interactive proof, i.e.
we transition between partial proofs and rules may
assign metavariables that affect arbitrary goals.

▶ Confluence is probably similar.



Implementation
▶ Implemented in Aesop, a new proof search tactic for

Lean.
▶ Performance seems acceptable on typical (small)

examples.
▶ Enables best-first search without any compromises.

Example

variable
(R : α → α → Prop)
(R_trans : ∀ x y z, R x y → R y z → R x z)

example : R a b → R b c → R c d → R a d := by
aesop


