------------------------------------------------------------------------
-- The Agda standard library
--
-- Basic definitions for morphisms between algebraic structures
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

open import Relation.Binary.Core

module Algebra.Morphism.Definitions
  {a} (A : Set a)     -- The domain of the morphism
  {b} (B : Set b)     -- The codomain of the morphism
  {} (_≈_ : Rel B )  -- The equality relation over the codomain
  where

open import Algebra.Core
open import Function.Core

------------------------------------------------------------------------
-- Basic definitions

Morphism : Set _
Morphism = A  B

Homomorphic₀ : Morphism  A  B  Set _
Homomorphic₀ ⟦_⟧   =     

Homomorphic₁ : Morphism  Fun₁ A  Op₁ B  Set _
Homomorphic₁ ⟦_⟧ ∙_ ∘_ =  x    x   (  x )

Homomorphic₂ : Morphism  Fun₂ A  Op₂ B  Set _
Homomorphic₂ ⟦_⟧ _∙_ _∘_ =  x y   x  y   ( x    y )