{-# OPTIONS --without-K --safe #-}
open import Algebra.Bundles
module Algebra.Properties.DistributiveLattice
{dl₁ dl₂} (DL : DistributiveLattice dl₁ dl₂)
where
open DistributiveLattice DL
import Algebra.Properties.Lattice as LatticeProperties
open import Algebra.Structures
open import Algebra.Definitions _≈_
open import Relation.Binary
open import Relation.Binary.Reasoning.Setoid setoid
open import Function.Base
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (_⇔_; module Equivalence)
open import Data.Product using (_,_)
open LatticeProperties lattice public
hiding (replace-equality)
∨-distribˡ-∧ : _∨_ DistributesOverˡ _∧_
∨-distribˡ-∧ x y z = begin
x ∨ y ∧ z ≈⟨ ∨-comm _ _ ⟩
y ∧ z ∨ x ≈⟨ ∨-distribʳ-∧ _ _ _ ⟩
(y ∨ x) ∧ (z ∨ x) ≈⟨ ∨-comm _ _ ⟨ ∧-cong ⟩ ∨-comm _ _ ⟩
(x ∨ y) ∧ (x ∨ z) ∎
∨-distrib-∧ : _∨_ DistributesOver _∧_
∨-distrib-∧ = ∨-distribˡ-∧ , ∨-distribʳ-∧
∧-distribˡ-∨ : _∧_ DistributesOverˡ _∨_
∧-distribˡ-∨ x y z = begin
x ∧ (y ∨ z) ≈⟨ ∧-congʳ $ sym (∧-absorbs-∨ _ _) ⟩
(x ∧ (x ∨ y)) ∧ (y ∨ z) ≈⟨ ∧-congʳ $ ∧-congˡ $ ∨-comm _ _ ⟩
(x ∧ (y ∨ x)) ∧ (y ∨ z) ≈⟨ ∧-assoc _ _ _ ⟩
x ∧ ((y ∨ x) ∧ (y ∨ z)) ≈⟨ ∧-congˡ $ sym (∨-distribˡ-∧ _ _ _) ⟩
x ∧ (y ∨ x ∧ z) ≈⟨ ∧-congʳ $ sym (∨-absorbs-∧ _ _) ⟩
(x ∨ x ∧ z) ∧ (y ∨ x ∧ z) ≈⟨ sym $ ∨-distribʳ-∧ _ _ _ ⟩
x ∧ y ∨ x ∧ z ∎
∧-distribʳ-∨ : _∧_ DistributesOverʳ _∨_
∧-distribʳ-∨ x y z = begin
(y ∨ z) ∧ x ≈⟨ ∧-comm _ _ ⟩
x ∧ (y ∨ z) ≈⟨ ∧-distribˡ-∨ _ _ _ ⟩
x ∧ y ∨ x ∧ z ≈⟨ ∧-comm _ _ ⟨ ∨-cong ⟩ ∧-comm _ _ ⟩
y ∧ x ∨ z ∧ x ∎
∧-distrib-∨ : _∧_ DistributesOver _∨_
∧-distrib-∨ = ∧-distribˡ-∨ , ∧-distribʳ-∨
∧-∨-isDistributiveLattice : IsDistributiveLattice _≈_ _∧_ _∨_
∧-∨-isDistributiveLattice = record
{ isLattice = ∧-∨-isLattice
; ∨-distribʳ-∧ = ∧-distribʳ-∨
}
∧-∨-distributiveLattice : DistributiveLattice _ _
∧-∨-distributiveLattice = record
{ isDistributiveLattice = ∧-∨-isDistributiveLattice
}
replace-equality : {_≈′_ : Rel Carrier dl₂} →
(∀ {x y} → x ≈ y ⇔ (x ≈′ y)) →
DistributiveLattice _ _
replace-equality {_≈′_} ≈⇔≈′ = record
{ _≈_ = _≈′_
; _∧_ = _∧_
; _∨_ = _∨_
; isDistributiveLattice = record
{ isLattice = Lattice.isLattice
(LatticeProperties.replace-equality lattice ≈⇔≈′)
; ∨-distribʳ-∧ = λ x y z → to ⟨$⟩ ∨-distribʳ-∧ x y z
}
} where open module E {x y} = Equivalence (≈⇔≈′ {x} {y})
∨-∧-distribˡ = ∨-distribˡ-∧
{-# WARNING_ON_USAGE ∨-∧-distribˡ
"Warning: ∨-∧-distribˡ was deprecated in v1.1.
Please use ∨-distribˡ-∧ instead."
#-}
∨-∧-distrib = ∨-distrib-∧
{-# WARNING_ON_USAGE ∨-∧-distrib
"Warning: ∨-∧-distrib was deprecated in v1.1.
Please use ∨-distrib-∧ instead."
#-}
∧-∨-distribˡ = ∧-distribˡ-∨
{-# WARNING_ON_USAGE ∧-∨-distribˡ
"Warning: ∧-∨-distribˡ was deprecated in v1.1.
Please use ∧-distribˡ-∨ instead."
#-}
∧-∨-distribʳ = ∧-distribʳ-∨
{-# WARNING_ON_USAGE ∧-∨-distribʳ
"Warning: ∧-∨-distribʳ was deprecated in v1.1.
Please use ∧-distribʳ-∨ instead."
#-}
∧-∨-distrib = ∧-distrib-∨
{-# WARNING_ON_USAGE ∧-∨-distrib
"Warning: ∧-∨-distrib was deprecated in v1.1.
Please use ∧-distrib-∨ instead."
#-}