------------------------------------------------------------------------
-- The Agda standard library
--
-- Some derivable properties
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

open import Algebra.Bundles

module Algebra.Properties.Group {g₁ g₂} (G : Group g₁ g₂) where

open Group G
open import Algebra.Definitions _≈_
open import Relation.Binary.Reasoning.Setoid setoid
open import Function
open import Data.Product

ε⁻¹≈ε : ε ⁻¹  ε
ε⁻¹≈ε = begin
  ε ⁻¹      ≈⟨ sym $ identityʳ (ε ⁻¹) 
  ε ⁻¹  ε  ≈⟨ inverseˡ ε 
  ε         

∙-cancelˡ : LeftCancellative _∙_
∙-cancelˡ x {y} {z} eq = begin
  y               ≈⟨ sym $ identityˡ y 
  ε  y           ≈⟨ sym $ ∙-congʳ $ inverseˡ x 
  (x ⁻¹  x)  y  ≈⟨ assoc (x ⁻¹) x y 
  x ⁻¹  (x  y)  ≈⟨ ∙-congˡ eq 
  x ⁻¹  (x  z)  ≈⟨ sym $ assoc (x ⁻¹) x z 
  (x ⁻¹  x)  z  ≈⟨ ∙-congʳ $ inverseˡ x 
  ε  z           ≈⟨ identityˡ z 
  z               

∙-cancelʳ : RightCancellative _∙_
∙-cancelʳ {x} y z eq = begin
  y               ≈⟨ sym $ identityʳ y 
  y  ε           ≈⟨ sym $ ∙-congˡ $ inverseʳ x 
  y  (x  x ⁻¹)  ≈⟨ sym $ assoc y x (x ⁻¹) 
  (y  x)  x ⁻¹  ≈⟨ ∙-congʳ eq 
  (z  x)  x ⁻¹  ≈⟨ assoc z x (x ⁻¹) 
  z  (x  x ⁻¹)  ≈⟨ ∙-congˡ $ inverseʳ x 
  z  ε           ≈⟨ identityʳ z 
  z               

∙-cancel : Cancellative _∙_
∙-cancel = ∙-cancelˡ , ∙-cancelʳ

⁻¹-involutive :  x  x ⁻¹ ⁻¹  x
⁻¹-involutive x = begin
  x ⁻¹ ⁻¹               ≈⟨ sym $ identityʳ _ 
  x ⁻¹ ⁻¹  ε           ≈⟨ ∙-congˡ $ sym (inverseˡ _) 
  x ⁻¹ ⁻¹  (x ⁻¹  x)  ≈⟨ sym $ assoc _ _ _ 
  x ⁻¹ ⁻¹  x ⁻¹  x    ≈⟨ ∙-congʳ $ inverseˡ _ 
  ε  x                 ≈⟨ identityˡ _ 
  x                     

private

  left-helper :  x y  x  (x  y)  y ⁻¹
  left-helper x y = begin
    x              ≈⟨ sym (identityʳ x) 
    x  ε          ≈⟨ ∙-congˡ $ sym (inverseʳ y) 
    x  (y  y ⁻¹) ≈⟨ sym (assoc x y (y ⁻¹)) 
    (x  y)  y ⁻¹ 

  right-helper :  x y  y  x ⁻¹  (x  y)
  right-helper x y = begin
    y              ≈⟨ sym (identityˡ y) 
    ε           y ≈⟨ ∙-congʳ $ sym (inverseˡ x) 
    (x ⁻¹  x)  y ≈⟨ assoc (x ⁻¹) x y 
    x ⁻¹  (x  y) 

identityˡ-unique :  x y  x  y  y  x  ε
identityˡ-unique x y eq = begin
  x              ≈⟨ left-helper x y 
  (x  y)  y ⁻¹ ≈⟨ ∙-congʳ eq 
       y   y ⁻¹ ≈⟨ inverseʳ y 
  ε              

identityʳ-unique :  x y  x  y  x  y  ε
identityʳ-unique x y eq = begin
  y              ≈⟨ right-helper x y 
  x ⁻¹  (x  y) ≈⟨ refl  ∙-cong  eq 
  x ⁻¹   x      ≈⟨ inverseˡ x 
  ε              

identity-unique :  {x}  Identity x _∙_  x  ε
identity-unique {x} id = identityˡ-unique x x (proj₂ id x)

inverseˡ-unique :  x y  x  y  ε  x  y ⁻¹
inverseˡ-unique x y eq = begin
  x              ≈⟨ left-helper x y 
  (x  y)  y ⁻¹ ≈⟨ ∙-congʳ eq 
       ε   y ⁻¹ ≈⟨ identityˡ (y ⁻¹) 
            y ⁻¹ 

inverseʳ-unique :  x y  x  y  ε  y  x ⁻¹
inverseʳ-unique x y eq = begin
  y       ≈⟨ sym (⁻¹-involutive y) 
  y ⁻¹ ⁻¹ ≈⟨ ⁻¹-cong (sym (inverseˡ-unique x y eq)) 
  x ⁻¹    


------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.

-- Version 1.1

left-identity-unique = identityˡ-unique
{-# WARNING_ON_USAGE left-identity-unique
"Warning: left-identity-unique was deprecated in v1.1.
Please use identityˡ-unique instead."
#-}
right-identity-unique = identityʳ-unique
{-# WARNING_ON_USAGE right-identity-unique
"Warning: right-identity-unique was deprecated in v1.1.
Please use identityʳ-unique instead."
#-}
left-inverse-unique = inverseˡ-unique
{-# WARNING_ON_USAGE left-inverse-unique
"Warning: left-inverse-unique was deprecated in v1.1.
Please use inverseˡ-unique instead."
#-}
right-inverse-unique = inverseʳ-unique
{-# WARNING_ON_USAGE right-inverse-unique
"Warning: right-inverse-unique was deprecated in v1.1.
Please use inverseʳ-unique instead."
#-}