{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
open import Algebra.Core
module Relation.Binary.Construct.NaturalOrder.Left
{a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (_∙_ : Op₂ A) where
open import Algebra.Definitions _≈_
open import Algebra.Structures _≈_
open import Data.Product using (_,_; _×_)
open import Data.Sum using (inj₁; inj₂)
open import Relation.Nullary using (¬_)
import Relation.Binary.Reasoning.Setoid as EqReasoning
open import Relation.Binary.Lattice using (Infimum)
infix 4 _≤_
_≤_ : Rel A ℓ
x ≤ y = x ≈ (x ∙ y)
reflexive : IsMagma _∙_ → Idempotent _∙_ → _≈_ ⇒ _≤_
reflexive magma idem {x} {y} x≈y = begin
x ≈⟨ sym (idem x) ⟩
x ∙ x ≈⟨ ∙-cong refl x≈y ⟩
x ∙ y ∎
where open IsMagma magma; open EqReasoning setoid
refl : Symmetric _≈_ → Idempotent _∙_ → Reflexive _≤_
refl sym idem {x} = sym (idem x)
antisym : IsEquivalence _≈_ → Commutative _∙_ → Antisymmetric _≈_ _≤_
antisym isEq comm {x} {y} x≤y y≤x = begin
x ≈⟨ x≤y ⟩
x ∙ y ≈⟨ comm x y ⟩
y ∙ x ≈⟨ sym y≤x ⟩
y ∎
where open IsEquivalence isEq; open EqReasoning (record { isEquivalence = isEq })
total : Symmetric _≈_ → Transitive _≈_ → Selective _∙_ → Commutative _∙_ → Total _≤_
total sym trans sel comm x y with sel x y
... | inj₁ x∙y≈x = inj₁ (sym x∙y≈x)
... | inj₂ x∙y≈y = inj₂ (sym (trans (comm y x) x∙y≈y))
trans : IsSemigroup _∙_ → Transitive _≤_
trans semi {x} {y} {z} x≤y y≤z = begin
x ≈⟨ x≤y ⟩
x ∙ y ≈⟨ ∙-cong S.refl y≤z ⟩
x ∙ (y ∙ z) ≈⟨ sym (assoc x y z) ⟩
(x ∙ y) ∙ z ≈⟨ ∙-cong (sym x≤y) S.refl ⟩
x ∙ z ∎
where open module S = IsSemigroup semi; open EqReasoning S.setoid
respʳ : IsMagma _∙_ → _≤_ Respectsʳ _≈_
respʳ magma {x} {y} {z} y≈z x≤y = begin
x ≈⟨ x≤y ⟩
x ∙ y ≈⟨ ∙-cong M.refl y≈z ⟩
x ∙ z ∎
where open module M = IsMagma magma; open EqReasoning M.setoid
respˡ : IsMagma _∙_ → _≤_ Respectsˡ _≈_
respˡ magma {x} {y} {z} y≈z y≤x = begin
z ≈⟨ sym y≈z ⟩
y ≈⟨ y≤x ⟩
y ∙ x ≈⟨ ∙-cong y≈z M.refl ⟩
z ∙ x ∎
where open module M = IsMagma magma; open EqReasoning M.setoid
resp₂ : IsMagma _∙_ → _≤_ Respects₂ _≈_
resp₂ magma = respʳ magma , respˡ magma
dec : Decidable _≈_ → Decidable _≤_
dec _≟_ x y = x ≟ (x ∙ y)
module _ (semi : IsSemilattice _∙_) where
private open module S = IsSemilattice semi
open EqReasoning setoid
x∙y≤x : ∀ x y → (x ∙ y) ≤ x
x∙y≤x x y = begin
x ∙ y ≈⟨ ∧-cong (sym (idem x)) S.refl ⟩
(x ∙ x) ∙ y ≈⟨ assoc x x y ⟩
x ∙ (x ∙ y) ≈⟨ comm x (x ∙ y) ⟩
(x ∙ y) ∙ x ∎
x∙y≤y : ∀ x y → (x ∙ y) ≤ y
x∙y≤y x y = begin
x ∙ y ≈⟨ ∧-cong S.refl (sym (idem y)) ⟩
x ∙ (y ∙ y) ≈⟨ sym (assoc x y y) ⟩
(x ∙ y) ∙ y ∎
∙-presʳ-≤ : ∀ {x y} z → z ≤ x → z ≤ y → z ≤ (x ∙ y)
∙-presʳ-≤ {x} {y} z z≤x z≤y = begin
z ≈⟨ z≤y ⟩
z ∙ y ≈⟨ ∧-cong z≤x S.refl ⟩
(z ∙ x) ∙ y ≈⟨ assoc z x y ⟩
z ∙ (x ∙ y) ∎
infimum : Infimum _≤_ _∙_
infimum x y = x∙y≤x x y , x∙y≤y x y , ∙-presʳ-≤
isPreorder : IsBand _∙_ → IsPreorder _≈_ _≤_
isPreorder band = record
{ isEquivalence = isEquivalence
; reflexive = reflexive isMagma idem
; trans = trans isSemigroup
}
where open IsBand band hiding (reflexive; trans)
isPartialOrder : IsSemilattice _∙_ → IsPartialOrder _≈_ _≤_
isPartialOrder semilattice = record
{ isPreorder = isPreorder isBand
; antisym = antisym isEquivalence comm
}
where open IsSemilattice semilattice
isDecPartialOrder : IsSemilattice _∙_ → Decidable _≈_ →
IsDecPartialOrder _≈_ _≤_
isDecPartialOrder semilattice _≟_ = record
{ isPartialOrder = isPartialOrder semilattice
; _≟_ = _≟_
; _≤?_ = dec _≟_
}
isTotalOrder : IsSemilattice _∙_ → Selective _∙_ → IsTotalOrder _≈_ _≤_
isTotalOrder latt sel = record
{ isPartialOrder = isPartialOrder latt
; total = total sym S.trans sel comm
}
where open module S = IsSemilattice latt
isDecTotalOrder : IsSemilattice _∙_ → Selective _∙_ →
Decidable _≈_ → IsDecTotalOrder _≈_ _≤_
isDecTotalOrder latt sel _≟_ = record
{ isTotalOrder = isTotalOrder latt sel
; _≟_ = _≟_
; _≤?_ = dec _≟_
}
preorder : IsBand _∙_ → Preorder a ℓ ℓ
preorder band = record
{ isPreorder = isPreorder band
}
poset : IsSemilattice _∙_ → Poset a ℓ ℓ
poset latt = record
{ isPartialOrder = isPartialOrder latt
}
decPoset : IsSemilattice _∙_ → Decidable _≈_ → DecPoset a ℓ ℓ
decPoset latt dec = record
{ isDecPartialOrder = isDecPartialOrder latt dec
}
totalOrder : IsSemilattice _∙_ → Selective _∙_ → TotalOrder a ℓ ℓ
totalOrder latt sel = record
{ isTotalOrder = isTotalOrder latt sel
}
decTotalOrder : IsSemilattice _∙_ → Selective _∙_ →
Decidable _≈_ → DecTotalOrder a ℓ ℓ
decTotalOrder latt sel dec = record
{ isDecTotalOrder = isDecTotalOrder latt sel dec
}