{-# OPTIONS --without-K --safe #-}
module Relation.Binary.PropositionalEquality where
open import Algebra
open import Algebra.Structures
open import Algebra.FunctionProperties
import Axiom.Extensionality.Propositional as Ext
open import Axiom.UniquenessOfIdentityProofs
open import Function.Base
open import Function.Equality using (Π; _⟶_; ≡-setoid)
open import Level using (Level; _⊔_)
open import Data.Product using (∃)
open import Relation.Nullary using (yes ; no)
open import Relation.Nullary.Decidable.Core
open import Relation.Unary using (Pred)
open import Relation.Binary
open import Relation.Binary.Indexed.Heterogeneous
using (IndexedSetoid)
import Relation.Binary.Indexed.Heterogeneous.Construct.Trivial
as Trivial
private
variable
a b c ℓ p : Level
A : Set a
B : Set b
C : Set c
open import Relation.Binary.PropositionalEquality.Core public
subst₂ : ∀ (_∼_ : REL A B ℓ) {x y u v} → x ≡ y → u ≡ v → x ∼ u → y ∼ v
subst₂ _ refl refl p = p
cong-app : ∀ {A : Set a} {B : A → Set b} {f g : (x : A) → B x} →
f ≡ g → (x : A) → f x ≡ g x
cong-app refl x = refl
cong₂ : ∀ (f : A → B → C) {x y u v} → x ≡ y → u ≡ v → f x u ≡ f y v
cong₂ f refl refl = refl
isEquivalence : IsEquivalence {A = A} _≡_
isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
isDecEquivalence : Decidable _≡_ → IsDecEquivalence {A = A} _≡_
isDecEquivalence _≟_ = record
{ isEquivalence = isEquivalence
; _≟_ = _≟_
}
isPreorder : IsPreorder {A = A} _≡_ _≡_
isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = id
; trans = trans
}
setoid : Set a → Setoid _ _
setoid A = record
{ Carrier = A
; _≈_ = _≡_
; isEquivalence = isEquivalence
}
decSetoid : Decidable {A = A} _≡_ → DecSetoid _ _
decSetoid _≟_ = record
{ _≈_ = _≡_
; isDecEquivalence = isDecEquivalence _≟_
}
preorder : Set a → Preorder _ _ _
preorder A = record
{ Carrier = A
; _≈_ = _≡_
; _∼_ = _≡_
; isPreorder = isPreorder
}
infix 4 _≗_
_→-setoid_ : ∀ (A : Set a) (B : Set b) → Setoid _ _
A →-setoid B = ≡-setoid A (Trivial.indexedSetoid (setoid B))
_≗_ : (f g : A → B) → Set _
_≗_ {A = A} {B = B} = Setoid._≈_ (A →-setoid B)
:→-to-Π : ∀ {A : Set a} {B : IndexedSetoid A b ℓ} →
((x : A) → IndexedSetoid.Carrier B x) → Π (setoid A) B
:→-to-Π {B = B} f = record
{ _⟨$⟩_ = f
; cong = λ { refl → IndexedSetoid.refl B }
}
where open IndexedSetoid B using (_≈_)
→-to-⟶ : ∀ {A : Set a} {B : Setoid b ℓ} →
(A → Setoid.Carrier B) → setoid A ⟶ B
→-to-⟶ = :→-to-Π
record Reveal_·_is_ {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) (y : B x) :
Set (a ⊔ b) where
constructor [_]
field eq : f x ≡ y
inspect : ∀ {A : Set a} {B : A → Set b}
(f : (x : A) → B x) (x : A) → Reveal f · x is f x
inspect f x = [ refl ]
isPropositional : Set a → Set a
isPropositional A = (a b : A) → a ≡ b
trans-injectiveˡ : ∀ {x y z : A} {p₁ p₂ : x ≡ y} (q : y ≡ z) →
trans p₁ q ≡ trans p₂ q → p₁ ≡ p₂
trans-injectiveˡ refl = subst₂ _≡_ (trans-reflʳ _) (trans-reflʳ _)
trans-injectiveʳ : ∀ {x y z : A} (p : x ≡ y) {q₁ q₂ : y ≡ z} →
trans p q₁ ≡ trans p q₂ → q₁ ≡ q₂
trans-injectiveʳ refl eq = eq
cong-id : ∀ {x y : A} (p : x ≡ y) → cong id p ≡ p
cong-id refl = refl
cong-∘ : ∀ {x y : A} {f : B → C} {g : A → B} (p : x ≡ y) →
cong (f ∘ g) p ≡ cong f (cong g p)
cong-∘ refl = refl
module _ {P : Pred A p} {x y : A} where
subst-injective : ∀ (x≡y : x ≡ y) {p q : P x} →
subst P x≡y p ≡ subst P x≡y q → p ≡ q
subst-injective refl p≡q = p≡q
subst-subst : ∀ {z} (x≡y : x ≡ y) {y≡z : y ≡ z} {p : P x} →
subst P y≡z (subst P x≡y p) ≡ subst P (trans x≡y y≡z) p
subst-subst refl = refl
subst-subst-sym : (x≡y : x ≡ y) {p : P y} →
subst P x≡y (subst P (sym x≡y) p) ≡ p
subst-subst-sym refl = refl
subst-sym-subst : (x≡y : x ≡ y) {p : P x} →
subst P (sym x≡y) (subst P x≡y p) ≡ p
subst-sym-subst refl = refl
subst-∘ : ∀ {x y : A} {P : Pred B p} {f : A → B}
(x≡y : x ≡ y) {p : P (f x)} →
subst (P ∘ f) x≡y p ≡ subst P (cong f x≡y) p
subst-∘ refl = refl
subst-application : ∀ {a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂}
(B₁ : A₁ → Set b₁) {B₂ : A₂ → Set b₂}
{f : A₂ → A₁} {x₁ x₂ : A₂} {y : B₁ (f x₁)}
(g : ∀ x → B₁ (f x) → B₂ x) (eq : x₁ ≡ x₂) →
subst B₂ eq (g x₁ y) ≡ g x₂ (subst B₁ (cong f eq) y)
subst-application _ _ refl = refl
naturality : ∀ {x y} {x≡y : x ≡ y} {f g : A → B}
(f≡g : ∀ x → f x ≡ g x) →
trans (cong f x≡y) (f≡g y) ≡ trans (f≡g x) (cong g x≡y)
naturality {x = x} {x≡y = refl} f≡g =
f≡g x ≡⟨ sym (trans-reflʳ _) ⟩
trans (f≡g x) refl ∎
where open ≡-Reasoning
cong-≡id : ∀ {f : A → A} {x : A} (f≡id : ∀ x → f x ≡ x) →
cong f (f≡id x) ≡ f≡id (f x)
cong-≡id {f = f} {x} f≡id =
cong f fx≡x ≡⟨ sym (trans-reflʳ _) ⟩
trans (cong f fx≡x) refl ≡⟨ cong (trans _) (sym (trans-symʳ fx≡x)) ⟩
trans (cong f fx≡x) (trans fx≡x (sym fx≡x)) ≡⟨ sym (trans-assoc (cong f fx≡x)) ⟩
trans (trans (cong f fx≡x) fx≡x) (sym fx≡x) ≡⟨ cong (λ p → trans p (sym _)) (naturality f≡id) ⟩
trans (trans f²x≡x (cong id fx≡x)) (sym fx≡x) ≡⟨ cong (λ p → trans (trans f²x≡x p) (sym fx≡x)) (cong-id _) ⟩
trans (trans f²x≡x fx≡x) (sym fx≡x) ≡⟨ trans-assoc f²x≡x ⟩
trans f²x≡x (trans fx≡x (sym fx≡x)) ≡⟨ cong (trans _) (trans-symʳ fx≡x) ⟩
trans f²x≡x refl ≡⟨ trans-reflʳ _ ⟩
f≡id (f x) ∎
where open ≡-Reasoning; fx≡x = f≡id x; f²x≡x = f≡id (f x)
module _ (_≟_ : Decidable {A = A} _≡_) {x y : A} where
≡-≟-identity : (eq : x ≡ y) → x ≟ y ≡ yes eq
≡-≟-identity eq = dec-yes-irr (x ≟ y) (Decidable⇒UIP.≡-irrelevant _≟_) eq
≢-≟-identity : x ≢ y → ∃ λ ¬eq → x ≟ y ≡ no ¬eq
≢-≟-identity ¬eq = dec-no (x ≟ y) ¬eq
isMagma : (_∙_ : Op₂ A) → IsMagma _≡_ _∙_
isMagma _∙_ = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _∙_
}
magma : (_∙_ : Op₂ A) → Magma _ _
magma _∙_ = record
{ isMagma = isMagma _∙_
}
Extensionality = Ext.Extensionality
{-# WARNING_ON_USAGE Extensionality
"Warning: Extensionality was deprecated in v1.0.
Please use Extensionality from `Axiom.Extensionality.Propositional` instead."
#-}
extensionality-for-lower-levels = Ext.lower-extensionality
{-# WARNING_ON_USAGE extensionality-for-lower-levels
"Warning: extensionality-for-lower-levels was deprecated in v1.0.
Please use lower-extensionality from `Axiom.Extensionality.Propositional` instead."
#-}
∀-extensionality = Ext.∀-extensionality
{-# WARNING_ON_USAGE ∀-extensionality
"Warning: ∀-extensionality was deprecated in v1.0.
Please use ∀-extensionality from `Axiom.Extensionality.Propositional` instead."
#-}