------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for reasoning with a partial setoid
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

open import Relation.Binary

module Relation.Binary.Reasoning.PartialSetoid {s₁ s₂} (S : PartialSetoid s₁ s₂) where

open PartialSetoid S

------------------------------------------------------------------------
-- Publicly re-export base contents

open import Relation.Binary.Reasoning.Base.Partial _≈_ trans public
  renaming (_∼⟨_⟩_ to _≈⟨_⟩_)

infixr 2 _≈˘⟨_⟩_

_≈˘⟨_⟩_ :  x {y z}  y  x  y IsRelatedTo z  x IsRelatedTo z
x ≈˘⟨ x≈y  y∼z = x ≈⟨ sym x≈y  y∼z