------------------------------------------------------------------------ -- The Agda standard library -- -- Convenient syntax for reasoning with a partial setoid ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Reasoning.PartialSetoid {s₁ s₂} (S : PartialSetoid s₁ s₂) where open PartialSetoid S ------------------------------------------------------------------------ -- Publicly re-export base contents open import Relation.Binary.Reasoning.Base.Partial _≈_ trans public renaming (_∼⟨_⟩_ to _≈⟨_⟩_) infixr 2 _≈˘⟨_⟩_ _≈˘⟨_⟩_ : ∀ x {y z} → y ≈ x → y IsRelatedTo z → x IsRelatedTo z x ≈˘⟨ x≈y ⟩ y∼z = x ≈⟨ sym x≈y ⟩ y∼z