{-# OPTIONS --without-K --safe #-}
module Source.Size where
open import Util.HoTT.HLevel.Core
open import Util.Prelude
infix 4 _<_
infixl 4 _∙_
mutual
data Ctx : Set where
[] : Ctx
_∙_ : (Δ : Ctx) (n : Size Δ) → Ctx
data Var : (Δ : Ctx) → Set where
zero : ∀ {Δ n} → Var (Δ ∙ n)
suc : ∀ {Δ n} (x : Var Δ) → Var (Δ ∙ n)
data Size : (Δ : Ctx) → Set where
var : ∀ {Δ} (x : Var Δ) → Size Δ
∞ zero : ∀ {Δ} → Size Δ
suc : ∀ {Δ} (n : Size Δ) → Size Δ
pattern ⋆ = suc ∞
variable
Δ Ω Δ′ Ω′ Δ″ Ω″ : Ctx
x y z : Var Δ
n m o p b n′ m′ o′ p′ b′ : Size Δ
wk : Size Δ → Size (Δ ∙ n)
wk (var x) = var (suc x)
wk ∞ = ∞
wk zero = zero
wk (suc m) = suc (wk m)
bound : Var Δ → Size Δ
bound (zero {Δ} {n}) = wk n
bound (suc x) = wk (bound x)
data _<_ {Δ} : (n m : Size Δ) → Set where
var : n ≡ bound x → var x < n
zero<suc : zero < suc n
zero<∞ : zero < ∞
suc<suc : (n<m : n < m) → suc n < suc m
suc<∞ : (n<∞ : n < ∞) → suc n < ∞
<-trans : n < m → m < o → n < o
<suc : n < suc n
data _≤_ {Δ} : (n m : Size Δ) → Set where
reflexive : n ≡ m → n ≤ m
<→≤ : n < m → n ≤ m
pattern ≤-refl = reflexive refl
pattern v0 = var zero
pattern v1 = var (suc zero)
pattern v2 = var (suc (suc zero))
abstract
n<m→n<Sm : n < m → n < suc m
n<m→n<Sm n<m = <-trans n<m <suc
n≤m→n<Sm : n ≤ m → n < suc m
n≤m→n<Sm ≤-refl = <suc
n≤m→n<Sm (<→≤ n<m) = n<m→n<Sm n<m
var<suc : var x ≤ n → var x < suc n
var<suc = n≤m→n<Sm
∞<suc : ∞ ≤ n → ∞ < suc n
∞<suc = n≤m→n<Sm
Sn<m→n<m : suc n < m → n < m
Sn<m→n<m (suc<suc n<m) = <-trans n<m <suc
Sn<m→n<m (suc<∞ n<∞) = n<∞
Sn<m→n<m (<-trans Sn<o o<m) = <-trans (Sn<m→n<m Sn<o) o<m
Sn<m→n<m <suc = <-trans <suc (suc<suc <suc)
suc-inj-Var : Var.suc {n = n} x ≡ suc y → x ≡ y
suc-inj-Var refl = refl
suc≡-prop-Var : (p : Var.suc {n = n} x ≡ suc y) → p ≡ cong suc (suc-inj-Var p)
suc≡-prop-Var refl = refl
Var-IsSet : (p q : x ≡ y) → p ≡ q
Var-IsSet {x = zero} {zero} refl refl = refl
Var-IsSet {x = suc x} {suc .x} p refl
= trans (suc≡-prop-Var p) (cong (cong suc) (Var-IsSet _ _))
suc-inj-Size : Size.suc n ≡ suc m → n ≡ m
suc-inj-Size refl = refl
suc≡-prop-Size : (p : Size.suc n ≡ suc m) → p ≡ cong suc (suc-inj-Size p)
suc≡-prop-Size refl = refl
var-inj-Size : Size.var x ≡ var y → x ≡ y
var-inj-Size refl = refl
var≡-prop-Size : (p : Size.var x ≡ var y) → p ≡ cong var (var-inj-Size p)
var≡-prop-Size refl = refl
Size-IsSet : (p q : n ≡ m) → p ≡ q
Size-IsSet {n = var x} {var .x} p refl
= trans (var≡-prop-Size p) (cong (cong var) (Var-IsSet _ _))
Size-IsSet {n = ∞} {∞} refl refl = refl
Size-IsSet {n = zero} {zero} refl refl = refl
Size-IsSet {n = suc n} {suc .n} p refl
= trans (suc≡-prop-Size p) (cong (cong suc) (Size-IsSet _ _))
wk-resp-< : n < m → wk {n = o} n < wk m
wk-resp-< (var p) = var (cong wk p)
wk-resp-< zero<suc = zero<suc
wk-resp-< zero<∞ = zero<∞
wk-resp-< (suc<suc n<m) = suc<suc (wk-resp-< n<m)
wk-resp-< (suc<∞ n<∞) = suc<∞ (wk-resp-< n<∞)
wk-resp-< (<-trans n<o o<m) = <-trans (wk-resp-< n<o) (wk-resp-< o<m)
wk-resp-< <suc = <suc