{-# OPTIONS --without-K --safe #-} module Source.Size where open import Util.HoTT.HLevel.Core open import Util.Prelude infix 4 _<_ infixl 4 _∙_ mutual data Ctx : Set where [] : Ctx _∙_ : (Δ : Ctx) (n : Size Δ) → Ctx data Var : (Δ : Ctx) → Set where zero : ∀ {Δ n} → Var (Δ ∙ n) suc : ∀ {Δ n} (x : Var Δ) → Var (Δ ∙ n) data Size : (Δ : Ctx) → Set where var : ∀ {Δ} (x : Var Δ) → Size Δ ∞ zero : ∀ {Δ} → Size Δ suc : ∀ {Δ} (n : Size Δ) → Size Δ pattern ⋆ = suc ∞ variable Δ Ω Δ′ Ω′ Δ″ Ω″ : Ctx x y z : Var Δ n m o p b n′ m′ o′ p′ b′ : Size Δ wk : Size Δ → Size (Δ ∙ n) wk (var x) = var (suc x) wk ∞ = ∞ wk zero = zero wk (suc m) = suc (wk m) bound : Var Δ → Size Δ bound (zero {Δ} {n}) = wk n bound (suc x) = wk (bound x) data _<_ {Δ} : (n m : Size Δ) → Set where var : n ≡ bound x → var x < n zero<suc : zero < suc n zero<∞ : zero < ∞ suc<suc : (n<m : n < m) → suc n < suc m suc<∞ : (n<∞ : n < ∞) → suc n < ∞ <-trans : n < m → m < o → n < o <suc : n < suc n data _≤_ {Δ} : (n m : Size Δ) → Set where reflexive : n ≡ m → n ≤ m <→≤ : n < m → n ≤ m pattern ≤-refl = reflexive refl pattern v0 = var zero pattern v1 = var (suc zero) pattern v2 = var (suc (suc zero)) abstract n<m→n<Sm : n < m → n < suc m n<m→n<Sm n<m = <-trans n<m <suc n≤m→n<Sm : n ≤ m → n < suc m n≤m→n<Sm ≤-refl = <suc n≤m→n<Sm (<→≤ n<m) = n<m→n<Sm n<m var<suc : var x ≤ n → var x < suc n var<suc = n≤m→n<Sm ∞<suc : ∞ ≤ n → ∞ < suc n ∞<suc = n≤m→n<Sm Sn<m→n<m : suc n < m → n < m Sn<m→n<m (suc<suc n<m) = <-trans n<m <suc Sn<m→n<m (suc<∞ n<∞) = n<∞ Sn<m→n<m (<-trans Sn<o o<m) = <-trans (Sn<m→n<m Sn<o) o<m Sn<m→n<m <suc = <-trans <suc (suc<suc <suc) suc-inj-Var : Var.suc {n = n} x ≡ suc y → x ≡ y suc-inj-Var refl = refl suc≡-prop-Var : (p : Var.suc {n = n} x ≡ suc y) → p ≡ cong suc (suc-inj-Var p) suc≡-prop-Var refl = refl Var-IsSet : (p q : x ≡ y) → p ≡ q Var-IsSet {x = zero} {zero} refl refl = refl Var-IsSet {x = suc x} {suc .x} p refl = trans (suc≡-prop-Var p) (cong (cong suc) (Var-IsSet _ _)) suc-inj-Size : Size.suc n ≡ suc m → n ≡ m suc-inj-Size refl = refl suc≡-prop-Size : (p : Size.suc n ≡ suc m) → p ≡ cong suc (suc-inj-Size p) suc≡-prop-Size refl = refl var-inj-Size : Size.var x ≡ var y → x ≡ y var-inj-Size refl = refl var≡-prop-Size : (p : Size.var x ≡ var y) → p ≡ cong var (var-inj-Size p) var≡-prop-Size refl = refl Size-IsSet : (p q : n ≡ m) → p ≡ q Size-IsSet {n = var x} {var .x} p refl = trans (var≡-prop-Size p) (cong (cong var) (Var-IsSet _ _)) Size-IsSet {n = ∞} {∞} refl refl = refl Size-IsSet {n = zero} {zero} refl refl = refl Size-IsSet {n = suc n} {suc .n} p refl = trans (suc≡-prop-Size p) (cong (cong suc) (Size-IsSet _ _)) wk-resp-< : n < m → wk {n = o} n < wk m wk-resp-< (var p) = var (cong wk p) wk-resp-< zero<suc = zero<suc wk-resp-< zero<∞ = zero<∞ wk-resp-< (suc<suc n<m) = suc<suc (wk-resp-< n<m) wk-resp-< (suc<∞ n<∞) = suc<∞ (wk-resp-< n<∞) wk-resp-< (<-trans n<o o<m) = <-trans (wk-resp-< n<o) (wk-resp-< o<m) wk-resp-< <suc = <suc