{-# OPTIONS --without-K #-}
module Model.RGraph where
open import Cats.Category
open import Relation.Binary using (IsEquivalence)
open import Util.HoTT.Equiv
open import Util.HoTT.FunctionalExtensionality
open import Util.HoTT.HLevel
open import Util.Prelude hiding (id) renaming (_∘_ to _∘F_)
open import Util.Relation.Binary.PropositionalEquality
infixr 0 _⇒_
infix 4 _≈_
infixr 9 _∘_
record RGraph : Set₁ where
no-eta-equality
field
ObjHSet : HSet 0ℓ
open HLevel ObjHSet public using () renaming
( type to Obj
; level to Obj-IsSet
)
field
eqHProp : Obj → Obj → HProp 0ℓ
private
module M₀ x y = HLevel (eqHProp x y)
module M₁ {x} {y} = HLevel (eqHProp x y)
open M₀ public using () renaming
( type to eq )
open M₁ public using () renaming
( level to eq-IsProp )
field
eq-refl : ∀ x → eq x x
open RGraph public
private
variable Γ Δ Ψ : RGraph
record _⇒_ (Γ Δ : RGraph) : Set where
no-eta-equality
field
fobj : Γ .Obj → Δ .Obj
feq : ∀ {x y} → Γ .eq x y → Δ .eq (fobj x) (fobj y)
open _⇒_ public
private
variable f g h i : Γ ⇒ Δ
⇒Canon : (Γ Δ : RGraph) → Set
⇒Canon Γ Δ
= Σ[ fobj ∈ (Γ .Obj → Δ .Obj) ]
(∀ {x y} → Γ .eq x y → Δ .eq (fobj x) (fobj y))
⇒≅⇒Canon : (Γ ⇒ Δ) ≅ (⇒Canon Γ Δ)
⇒≅⇒Canon = record
{ forth = λ f → f .fobj , f .feq
; isIso = record
{ back = λ f → record { fobj = proj₁ f ; feq = proj₂ f }
; back∘forth = λ where
record { fobj = fobj ; feq = feq } → refl
; forth∘back = λ f → refl
}
}
⇒Canon-IsSet : ∀ Γ Δ → IsSet (⇒Canon Γ Δ)
⇒Canon-IsSet Γ Δ
= Σ-IsSet
(→-IsSet (Δ .Obj-IsSet))
(λ _ → ∀∙-IsSet (λ _ → ∀∙-IsSet λ _ → →-IsSet (IsProp→IsSet (Δ .eq-IsProp))))
⇒-IsSet : IsSet (Γ ⇒ Δ)
⇒-IsSet {Γ} {Δ} = ≅-pres-IsOfHLevel 2 (≅-sym ⇒≅⇒Canon) (⇒Canon-IsSet Γ Δ)
record _≈_ (f g : Γ ⇒ Δ) : Set where
no-eta-equality
constructor ≈⁺
field
≈⁻ : ∀ x → f .fobj x ≡ g .fobj x
open _≈_ public
≈→≡Canon : ∀ {Γ Δ} {f g : Γ ⇒ Δ}
→ f ≈ g
→ ⇒≅⇒Canon .forth f ≡ ⇒≅⇒Canon .forth g
≈→≡Canon {Δ = Δ} {f} {g} (≈⁺ f≈g) = Σ-≡⁺
( funext f≈g
, funext∙ (funext∙ (funext λ x≈y → Δ .eq-IsProp _ _))
)
≈→≡ : f ≈ g → f ≡ g
≈→≡ f≈g = ≅-Injective ⇒≅⇒Canon (≈→≡Canon f≈g)
≈-isEquivalence : ∀ Γ Δ → IsEquivalence (_≈_ {Γ} {Δ})
≈-isEquivalence Γ Δ = record
{ refl = ≈⁺ (λ x → refl)
; sym = λ f≈g → ≈⁺ (λ x → sym (f≈g .≈⁻ x))
; trans = λ f≈g g≈h → ≈⁺ (λ x → trans (f≈g .≈⁻ x) (g≈h .≈⁻ x))
}
private
open module M₀ {Γ} {Δ}
= IsEquivalence (≈-isEquivalence Γ Δ) public using () renaming
( refl to ≈-refl
; sym to ≈-sym
; trans to ≈-trans
; reflexive to ≈-reflexive )
id : ∀ {Γ} → Γ ⇒ Γ
id = record { fobj = λ x → x ; feq = λ x → x }
_∘_ : ∀ {Γ Δ Ψ} → Δ ⇒ Ψ → Γ ⇒ Δ → Γ ⇒ Ψ
f ∘ g = record
{ fobj = f .fobj ∘F g .fobj
; feq = f .feq ∘F g .feq
}
RGraphs : Category (lsuc 0ℓ) 0ℓ 0ℓ
RGraphs = record
{ Obj = RGraph
; _⇒_ = _⇒_
; _≈_ = _≈_
; id = id
; _∘_ = _∘_
; equiv = ≈-isEquivalence _ _
; ∘-resp = λ {Γ Δ Ψ f g h i} f≈g h≈i
→ ≈⁺ (λ x → trans (f≈g .≈⁻ _) (cong (g .fobj) (h≈i .≈⁻ x)))
; id-r = ≈⁺ (λ x → refl)
; id-l = ≈⁺ (λ x → refl)
; assoc = ≈⁺ (λ x → refl)
}
module RGraphs = Category RGraphs