{-# OPTIONS --without-K --safe #-}
module Source.Size.Substitution.Canonical where
open import Source.Size
open import Util.Prelude
infix 0 Sub⊢
infixl 5 _>>_
data Sub (Δ : Ctx) : (Ω : Ctx) → Set where
[] : Sub Δ []
Snoc : (σ : Sub Δ Ω) (n : Size Δ) → Sub Δ (Ω ∙ m)
variable
σ τ σ′ τ′ ι ι′ : Sub Δ Ω
subV : Sub Δ Ω → Var Ω → Size Δ
subV (Snoc σ n) zero = n
subV (Snoc σ n) (suc x) = subV σ x
sub : Sub Δ Ω → Size Ω → Size Δ
sub σ (var x) = subV σ x
sub σ ∞ = ∞
sub σ zero = zero
sub σ (suc n) = suc (sub σ n)
data Sub⊢ Δ : ∀ Ω (σ : Sub Δ Ω) → Set where
[] : Sub⊢ Δ [] []
Snoc : (⊢σ : Sub⊢ Δ Ω σ) (n<m : n < sub σ m) → Sub⊢ Δ (Ω ∙ m) (Snoc σ n)
syntax Sub⊢ Δ Ω σ = σ ∶ Δ ⇒ Ω
abstract
sub-Snoc : ∀ (σ : Sub Δ Ω) n o
→ sub (Snoc {m = m} σ n) (wk o) ≡ sub σ o
sub-Snoc σ n (var x) = refl
sub-Snoc σ n ∞ = refl
sub-Snoc σ n zero = refl
sub-Snoc σ n (suc o) = cong suc (sub-Snoc σ n o)
mutual
subV-resp-< : σ ∶ Δ ⇒ Ω → var x < n → subV σ x < sub σ n
subV-resp-< {x = zero} (Snoc {σ = σ} {n} {m} ⊢σ n<m) (var refl)
= subst (n <_) (sym (sub-Snoc σ n m)) n<m
subV-resp-< {x = suc x} (Snoc {σ = σ} {n} {m} ⊢σ n<m) (var refl)
= subst (subV σ x <_) (sym (sub-Snoc σ n (bound x)))
(subV-resp-< ⊢σ (var refl))
subV-resp-< ⊢σ <suc = <suc
subV-resp-< ⊢σ (<-trans x<m m<n)
= <-trans (subV-resp-< ⊢σ x<m) (sub-resp-< ⊢σ m<n)
sub-resp-< : σ ∶ Δ ⇒ Ω → n < m → sub σ n < sub σ m
sub-resp-< ⊢σ (var p) = subV-resp-< ⊢σ (var p)
sub-resp-< ⊢σ zero<suc = zero<suc
sub-resp-< ⊢σ zero<∞ = zero<∞
sub-resp-< ⊢σ (suc<suc n<m) = suc<suc (sub-resp-< ⊢σ n<m)
sub-resp-< ⊢σ (suc<∞ n<∞) = suc<∞ (sub-resp-< ⊢σ n<∞)
sub-resp-< ⊢σ (<-trans n<o o<m)
= <-trans (sub-resp-< ⊢σ n<o) (sub-resp-< ⊢σ o<m)
sub-resp-< ⊢σ <suc = <suc
Weaken : Sub Δ Ω → Sub (Δ ∙ n) Ω
Weaken [] = []
Weaken (Snoc σ m) = Snoc (Weaken σ) (wk m)
abstract
subV-Weaken : ∀ (σ : Sub Δ Ω) x → subV (Weaken {n = o} σ) x ≡ wk (subV σ x)
subV-Weaken (Snoc σ n) zero = refl
subV-Weaken (Snoc σ n) (suc x) = subV-Weaken σ x
sub-Weaken : ∀ (σ : Sub Δ Ω) n → sub (Weaken {n = o} σ) n ≡ wk (sub σ n)
sub-Weaken σ (var x) = subV-Weaken σ x
sub-Weaken σ ∞ = refl
sub-Weaken σ zero = refl
sub-Weaken σ (suc n) = cong suc (sub-Weaken σ n)
Weaken⊢ : σ ∶ Δ ⇒ Ω → Weaken σ ∶ Δ ∙ n ⇒ Ω
Weaken⊢ [] = []
Weaken⊢ (Snoc {σ = σ} {n} {m} ⊢σ n<m)
= Snoc (Weaken⊢ ⊢σ)
(subst (wk n <_) (sym (sub-Weaken σ m)) (wk-resp-< n<m))
Lift : (σ : Sub Δ Ω) → Sub (Δ ∙ m) (Ω ∙ n)
Lift σ = Snoc (Weaken σ) (var zero)
abstract
Lift⊢ : σ ∶ Δ ⇒ Ω → m ≡ sub σ n → Lift σ ∶ Δ ∙ m ⇒ Ω ∙ n
Lift⊢ {Δ} {σ = σ} {n = n} ⊢σ refl
= Snoc (Weaken⊢ ⊢σ) (var (sub-Weaken σ n))
mutual
Id : Sub Δ Δ
Id {[]} = []
Id {Δ ∙ n} = Lift Id
abstract
subV-Id : ∀ x → subV (Id {Δ}) x ≡ var x
subV-Id zero = refl
subV-Id (suc x) = trans (subV-Weaken Id x) (cong wk (subV-Id x))
sub-Id : ∀ n → σ ≡ Id → sub σ n ≡ n
sub-Id (var x) refl = subV-Id x
sub-Id ∞ _ = refl
sub-Id zero _ = refl
sub-Id (suc n) p = cong suc (sub-Id n p)
abstract
Id⊢ : Id ∶ Δ ⇒ Δ
Id⊢ {[]} = []
Id⊢ {Δ ∙ n} = Lift⊢ Id⊢ (sym (sub-Id _ refl))
Wk : Sub (Δ ∙ n) Δ
Wk = Weaken Id
abstract
sub-Wk : ∀ n → sub (Wk {Δ} {o}) n ≡ wk n
sub-Wk n = trans (sub-Weaken Id n) (cong wk (sub-Id _ refl))
Wk⊢ : Wk ∶ Δ ∙ n ⇒ Δ
Wk⊢ = Weaken⊢ Id⊢
Sing : Size Δ → Sub Δ (Δ ∙ m)
Sing n = Snoc Id n
abstract
Sing⊢ : n < m → Sing n ∶ Δ ⇒ Δ ∙ m
Sing⊢ {n = n} n<m
= Snoc Id⊢ (subst (n <_) (sym (sub-Id _ refl)) n<m)
_>>_ : Sub Δ Δ′ → Sub Δ′ Δ″ → Sub Δ Δ″
σ >> [] = []
σ >> Snoc τ n = Snoc (σ >> τ) (sub σ n)
abstract
subV->> : ∀ (σ : Sub Δ Δ′) (τ : Sub Δ′ Δ″) x
→ subV (σ >> τ) x ≡ sub σ (subV τ x)
subV->> σ (Snoc τ n) zero = refl
subV->> σ (Snoc τ n) (suc x) = subV->> σ τ x
sub->> : ∀ n → ι ≡ σ >> τ
→ sub ι n ≡ sub σ (sub τ n)
sub->> {σ = σ} {τ} (var x) refl = subV->> σ τ x
sub->> ∞ _ = refl
sub->> zero _ = refl
sub->> (suc n) p = cong suc (sub->> n p)
sub->>′ : σ >> τ ≡ σ′ >> τ′ → sub σ (sub τ n) ≡ sub σ′ (sub τ′ n)
sub->>′ {σ = σ} {τ = τ} {σ′ = σ′} {τ′} {n} eq
= trans (sym (sub->> n refl))
(trans (cong (λ σ → sub σ n) eq) (sub->> n refl))
>>⊢ : σ ∶ Δ ⇒ Δ′ → τ ∶ Δ′ ⇒ Δ″ → σ >> τ ∶ Δ ⇒ Δ″
>>⊢ ⊢σ [] = []
>>⊢ {σ = σ} ⊢σ (Snoc {σ = τ} {n} {m} ⊢τ n<m)
= Snoc (>>⊢ ⊢σ ⊢τ)
(subst (sub σ n <_) (sym (sub->> m refl)) (sub-resp-< ⊢σ n<m))
Skip : Sub (Δ ∙ n ∙ v0) (Δ ∙ n)
Skip = Snoc (Weaken Wk) (var zero)
abstract
Skip⊢ : Skip ∶ Δ ∙ n ∙ v0 ⇒ Δ ∙ n
Skip⊢ {n = n}
= Snoc (Weaken⊢ Wk⊢)
(<-trans (var refl)
(var (trans (sub-Weaken Wk n) (cong wk (sub-Wk n)))))
Weaken>> : Weaken σ >> τ ≡ Weaken {n = n} (σ >> τ)
Weaken>> {τ = []} = refl
Weaken>> {σ = σ} {τ = Snoc τ n} = cong₂ Snoc Weaken>> (sub-Weaken σ n)
Snoc>>Weaken : Snoc {m = m} σ n >> Weaken τ ≡ σ >> τ
Snoc>>Weaken {τ = []} = refl
Snoc>>Weaken {σ = σ} {n = n} {τ = Snoc τ k}
= cong₂ Snoc Snoc>>Weaken (sub-Snoc σ n k)
id-l : Id >> σ ≡ σ
id-l {σ = []} = refl
id-l {σ = Snoc σ n} = cong₂ Snoc id-l (sub-Id n refl)
id-r : {σ : Sub Δ Ω} → σ >> Id ≡ σ
id-r {σ = []} = refl
id-r {σ = Snoc σ n} = cong₂ Snoc (trans Snoc>>Weaken id-r) refl
>>-assoc : σ >> (τ >> ι) ≡ σ >> τ >> ι
>>-assoc {ι = []} = refl
>>-assoc {σ = σ} {τ = τ} {ι = Snoc ι n}
= cong₂ Snoc >>-assoc (sym (sub->> n refl))
Wk>> : Wk >> σ ≡ Weaken {n = n} σ
Wk>> = trans Weaken>> (cong Weaken id-l)
Snoc>>Wk : Snoc {m = m} σ n >> Wk ≡ σ
Snoc>>Wk = trans Snoc>>Weaken id-r
Lift>>Weaken : Lift {m = m} {n} σ >> Weaken τ ≡ Weaken (σ >> τ)
Lift>>Weaken = trans Snoc>>Weaken Weaken>>
Lift>>Wk : Lift {m = m} {n} σ >> Wk ≡ Wk >> σ
Lift>>Wk = trans Lift>>Weaken (trans (sym Wk>>) (cong (Wk >>_) id-r))
Sing>>Weaken : Sing {m = m} n >> Weaken σ ≡ σ
Sing>>Weaken = trans Snoc>>Weaken id-l
Sing>>Wk : Sing {m = m} n >> Wk ≡ Id
Sing>>Wk = trans Snoc>>Weaken id-r
Sing>>Lift : ∀ n → Sing (sub σ n) >> Lift {m = m} {o} σ ≡ σ >> Sing n
Sing>>Lift n = cong₂ Snoc (trans Sing>>Weaken (sym id-r)) refl
Lift>>Lift : Lift {m = m} {n} σ >> Lift {n = o} τ ≡ Lift (σ >> τ)
Lift>>Lift = cong₂ Snoc Lift>>Weaken refl
Skip>>Weaken : Skip {n = n} >> Weaken σ ≡ Weaken (Weaken σ)
Skip>>Weaken = trans Snoc>>Weaken (trans Weaken>> (cong Weaken Wk>>))
Skip>>Lift : Skip >> Lift {m = m} {n} σ ≡ Lift (Lift σ) >> Skip
Skip>>Lift
= cong₂ Snoc
(trans Skip>>Weaken
(sym (trans Lift>>Weaken (cong Weaken (trans Snoc>>Weaken id-r)))))
refl
Lift-Id : Lift {m = m} Id ≡ Id
Lift-Id = refl
LiftSing>>Wk>>Wk : Lift {m = o} {m} (Sing n) >> (Wk >> Wk) ≡ Wk
LiftSing>>Wk>>Wk {n = n} {m} = let open ≡-Reasoning in
begin
Lift (Sing n) >> (Wk >> Wk)
≡⟨ cong (Lift (Sing n) >>_) Wk>> ⟩
Lift (Sing n) >> (Weaken Wk)
≡⟨ Lift>>Weaken ⟩
Weaken (Sing n >> Weaken Id)
≡⟨ cong Weaken Sing>>Weaken ⟩
Wk
∎
LiftSing>>Skip
: Lift {m = m} (Sing {m = m} n) >> Skip ≡ Sing {m = o} (var zero) >> Lift Wk
LiftSing>>Skip {n = n} = cong₂ Snoc go refl
where
go : Lift (Sing n) >> Weaken Wk ≡ Sing (var zero) >> Weaken Wk
go = let open ≡-Reasoning in
begin
Lift (Sing n) >> Weaken Wk
≡⟨ Lift>>Weaken ⟩
Weaken (Sing n >> Weaken Id)
≡⟨ cong Weaken Sing>>Wk ⟩
Wk
≡⟨ sym Sing>>Weaken ⟩
Sing (var zero) >> Weaken Wk
∎
LiftLift>>Skip : Lift (Lift {m = m} {n} σ) >> Skip ≡ Skip >> Lift σ
LiftLift>>Skip
= cong₂ Snoc (trans Lift>>Weaken
(sym (trans Skip>>Weaken (cong Weaken (sym Snoc>>Wk))))) refl