{-# OPTIONS --safe --without-K #-}
module Source.Size.Substitution.Theory where
open import Source.Size
open import Source.Size.Substitution.Canonical as SC using (Sub⊢)
open import Source.Size.Substitution.Universe as SU using (⟨_⟩ ; Sub⊢ᵤ)
open import Util.Prelude
record SubTheory (A : Ctx → Set) : Set where
infixl 5 _[_] _[_]ᵤ
field
_[_] : A Ω → SC.Sub Δ Ω → A Δ
[Id] : ∀ {Δ} (a : A Δ) → a [ SC.Id ] ≡ a
[>>] : ∀ {Δ Δ′ Δ″} (σ : SC.Sub Δ Δ′) (τ : SC.Sub Δ′ Δ″) a
→ a [ σ SC.>> τ ] ≡ a [ τ ] [ σ ]
abstract
[Id]′ : ∀ {Δ} {σ : SC.Sub Δ Δ} a
→ σ ≡ SC.Id
→ a [ σ ] ≡ a
[Id]′ a refl = [Id] a
[>>]′ : ∀ {Δ Δ′ Δ″} (ι : SC.Sub Δ Δ″) (σ : SC.Sub Δ Δ′) (τ : SC.Sub Δ′ Δ″) a
→ ι ≡ σ SC.>> τ
→ a [ ι ] ≡ a [ τ ] [ σ ]
[>>]′ ι σ τ a refl = [>>] σ τ a
[>>]″ : ∀ {Δ Δ′ Δ″} (σ : SC.Sub Δ Δ′) (τ : SC.Sub Δ′ Δ″)
→ ∀ (σ′ : SC.Sub Δ Ω) (τ′ : SC.Sub Ω Δ″) a
→ σ SC.>> τ ≡ σ′ SC.>> τ′
→ a [ τ ] [ σ ] ≡ a [ τ′ ] [ σ′ ]
[>>]″ σ τ σ′ τ′ a eq
= trans (sym ([>>] σ τ a)) (trans (cong (λ σ → a [ σ ]) eq) ([>>] σ′ τ′ a))
_[_]ᵤ : A Ω → SU.Sub Δ Ω → A Δ
a [ σ ]ᵤ = a [ ⟨ σ ⟩ ]
abstract
[]ᵤ-resp-≈ : ∀ {Δ Ω} {σ τ : SU.Sub Δ Ω}
→ σ SU.≈ τ
→ ∀ a
→ a [ σ ]ᵤ ≡ a [ τ ]ᵤ
[]ᵤ-resp-≈ (SU.≈⁺ p) a = cong (λ σ → a [ σ ]) p
[Id]ᵤ : ∀ {Δ} (a : A Δ) → a [ SU.Id ]ᵤ ≡ a
[Id]ᵤ a = [Id] a
[Id]ᵤ′ : ∀ {Δ} {σ : SU.Sub Δ Δ} (a : A Δ)
→ σ SU.≈ SU.Id
→ a [ σ ]ᵤ ≡ a
[Id]ᵤ′ a (SU.≈⁺ p) = [Id]′ a p
[>>]ᵤ : ∀ {Δ Δ′ Δ″} (σ : SU.Sub Δ Δ′) (τ : SU.Sub Δ′ Δ″) (a : A Δ″)
→ a [ σ SU.>> τ ]ᵤ ≡ a [ τ ]ᵤ [ σ ]ᵤ
[>>]ᵤ σ τ a = [>>] _ _ _
[>>]ᵤ′ : ∀ {Δ Δ′ Δ″} (ι : SU.Sub Δ Δ″) (σ : SU.Sub Δ Δ′) (τ : SU.Sub Δ′ Δ″) a
→ ι SU.≈ σ SU.>> τ
→ a [ ι ]ᵤ ≡ a [ τ ]ᵤ [ σ ]ᵤ
[>>]ᵤ′ ι σ τ a (SU.≈⁺ p) = [>>]′ ⟨ ι ⟩ ⟨ σ ⟩ ⟨ τ ⟩ a p
[>>]ᵤ″ : ∀ {Δ Δ′ Δ″} (σ : SU.Sub Δ Δ′) (τ : SU.Sub Δ′ Δ″)
→ ∀ (σ′ : SU.Sub Δ Ω) (τ′ : SU.Sub Ω Δ″) a
→ σ SU.>> τ SU.≈ σ′ SU.>> τ′
→ a [ τ ]ᵤ [ σ ]ᵤ ≡ a [ τ′ ]ᵤ [ σ′ ]ᵤ
[>>]ᵤ″ σ τ σ′ τ′ a (SU.≈⁺ p) = [>>]″ ⟨ σ ⟩ ⟨ τ ⟩ ⟨ σ′ ⟩ ⟨ τ′ ⟩ a p
open SubTheory {{...}} public
instance
SubTheory-Size : SubTheory Size
SubTheory-Size = record
{ _[_] = λ n σ → SC.sub σ n
; [Id] = λ n → SC.sub-Id n refl
; [>>] = λ σ τ n → SC.sub->> n refl
}