{-# OPTIONS --without-K #-}
module Util.Induction.WellFounded where
open import Induction.WellFounded public using
( Acc ; acc ; WellFounded ; module Subrelation ; module InverseImage
; module TransitiveClosure ; module Lexicographic )
open import Relation.Binary using (Rel)
open import Util.HoTT.FunctionalExtensionality using (funext)
open import Util.HoTT.HLevel using (IsProp ; ∀-IsProp)
open import Util.Prelude
module _ {α β} {A : Set α} {_<_ : Rel A β} where
Acc-IsProp : ∀ {x} → IsProp (Acc _<_ x)
Acc-IsProp (acc rs₀) (acc rs₁)
= cong acc (funext λ y → funext λ y<x → Acc-IsProp _ _)
WellFounded-IsProp : IsProp (WellFounded _<_)
WellFounded-IsProp = ∀-IsProp λ _ → Acc-IsProp
wfInd-acc : ∀ {γ} (P : A → Set γ)
→ (∀ x → (∀ y → y < x → P y) → P x)
→ ∀ x → Acc _<_ x → P x
wfInd-acc P f x (acc rs) = f x (λ y y<x → wfInd-acc P f y (rs y y<x))
mutual
wfIndΣ-acc : ∀ {γ} (P : A → Set γ)
→ (Q : ∀ x y → P x → P y → Set)
→ (f : ∀ x
→ (g : ∀ y → y < x → P y)
→ (∀ y y<x z z<x → Q y z (g y y<x) (g z z<x))
→ P x)
→ (∀ x g g-resp y h h-resp
→ (∀ z z<x z′ z′<y → Q z z′ (g z z<x) (h z′ z′<y))
→ Q x y (f x g g-resp) (f y h h-resp))
→ ∀ x → Acc _<_ x → P x
wfIndΣ-acc P Q f f-resp x (acc rs)
= f x
(λ y y<x → wfIndΣ-acc P Q f f-resp y (rs y y<x))
(λ y y<x z z<x
→ wfIndΣ-acc-resp P Q f f-resp y (rs y y<x) z (rs z z<x))
wfIndΣ-acc-resp : ∀ {γ} (P : A → Set γ)
→ (Q : ∀ x y → P x → P y → Set)
→ (f : ∀ x
→ (g : ∀ y → y < x → P y)
→ (∀ y y<x z z<x → Q y z (g y y<x) (g z z<x))
→ P x)
→ (f-resp : ∀ x g g-resp y h h-resp
→ (∀ z z<x z′ z′<y → Q z z′ (g z z<x) (h z′ z′<y))
→ Q x y (f x g g-resp) (f y h h-resp))
→ ∀ x x-acc y y-acc
→ Q x y (wfIndΣ-acc P Q f f-resp x x-acc) (wfIndΣ-acc P Q f f-resp y y-acc)
wfIndΣ-acc-resp P Q f f-resp x (acc rsx) y (acc rsy)
= f-resp _ _ _ _ _ _ λ z z<x z′ z′<y
→ wfIndΣ-acc-resp P Q f f-resp z (rsx z z<x) z′ (rsy z′ z′<y)
module Build (<-wf : WellFounded _<_) where
wfInd : ∀ {γ} (P : A → Set γ)
→ (∀ x → (∀ y → y < x → P y) → P x)
→ ∀ x → P x
wfInd P f x = wfInd-acc P f x (<-wf x)
wfRec : ∀ {γ} {B : Set γ}
→ (∀ x → (∀ y → y < x → B) → B)
→ A → B
wfRec = wfInd _
wfInd-unfold : ∀ {γ} (P : A → Set γ)
→ (f : ∀ x → (∀ y → y < x → P y) → P x)
→ (x : A)
→ wfInd P f x ≡ f x (λ y _ → wfInd P f y)
wfInd-unfold P f x with <-wf x
... | acc rs
= cong (f x)
(funext λ y → funext λ y<x →
cong (wfInd-acc P f y) (Acc-IsProp (rs y y<x) (<-wf y)))
wfRec-unfold : ∀ {γ} {B : Set γ}
→ (f : ∀ x → (∀ y → y < x → B) → B)
→ (x : A)
→ wfRec f x ≡ f x (λ y _ → wfRec f y)
wfRec-unfold = wfInd-unfold _
wfInd-ind : ∀ {γ} {P : A → Set γ}
→ (Q : ∀ x → P x → Set)
→ {f : ∀ x → (∀ y → y < x → P y) → P x}
→ (∀ x g
→ (∀ y y<x → Q y (g y y<x))
→ Q x (f x g))
→ {x : A}
→ Q x (wfInd P f x)
wfInd-ind {P = P} Q {f} f-resp
= wfInd (λ x → Q x (wfInd P f x))
(λ x rec → subst (Q x) (sym (wfInd-unfold P f x))
(f-resp _ _ rec))
_
module _ {γ} (P : A → Set γ)
(Q : ∀ x y → P x → P y → Set)
(f : ∀ x
→ (g : ∀ y → y < x → P y)
→ (∀ y y<x z z<x → Q y z (g y y<x) (g z z<x))
→ P x)
(f-resp : ∀ x g g-resp y h h-resp
→ (∀ z z<x z′ z′<y → Q z z′ (g z z<x) (h z′ z′<y))
→ Q x y (f x g g-resp) (f y h h-resp))
where
wfIndΣ : Σ[ f ∈ (∀ x → P x) ] (∀ x y → Q x y (f x) (f y))
wfIndΣ
= (λ x → wfIndΣ-acc P Q f f-resp x (<-wf x))
, λ x y → wfIndΣ-acc-resp P Q f f-resp x (<-wf x) y (<-wf y)
wfIndΣ-unfold : ∀ {x}
→ wfIndΣ .proj₁ x
≡ f x (λ y y<x → wfIndΣ .proj₁ y)
(λ y y<x z z<x → wfIndΣ .proj₂ y z)
wfIndΣ-unfold {x} with <-wf x
... | acc rs
= go rs (λ y y<x → <-wf y)
where
go : (p q : (y : A) → y < x → Acc _<_ y)
→ f x (λ y y<x → wfIndΣ-acc P Q f f-resp y (p y y<x))
(λ y y<x z z<x
→ wfIndΣ-acc-resp P Q f f-resp y (p y y<x) z (p z z<x))
≡ f x (λ y y<x → wfIndΣ-acc P Q f f-resp y (q y y<x))
(λ y y<x z z<x
→ wfIndΣ-acc-resp P Q f f-resp y (q y y<x) z (q z z<x))
go p q
rewrite (funext λ y → funext λ y<x → Acc-IsProp (p y y<x) (q y y<x))
= refl
wfIndΣ′ : Σ[ g ∈ (∀ x → P x) ]
Σ[ g-param ∈ (∀ x y → Q x y (g x) (g y)) ]
(∀ {x} → g x ≡ f x (λ y y<x → g y) (λ y y<x z z<x → g-param y z))
wfIndΣ′ = wfIndΣ .proj₁ , wfIndΣ .proj₂ , wfIndΣ-unfold
open Build public
module _ {α β γ δ} {A : Set α} {B : Set β} where
×-Rel : Rel A γ → Rel B δ → Rel (A × B) (γ ⊔ℓ δ)
×-Rel R S (a , b) (a′ , b′) = R a a′ × S b b′
×-wellFounded : {R : Rel A γ} {S : Rel B δ}
→ WellFounded R → WellFounded S → WellFounded (×-Rel R S)
×-wellFounded {R} {S} R-wf S-wf (a , b) = ×-acc (R-wf a) (S-wf b)
where
×-acc : ∀ {x y} → Acc R x → Acc S y → Acc (×-Rel R S) (x , y)
×-acc (acc rsa) (acc rsb)
= acc (λ { (a , b) (a<x , b<y) → ×-acc (rsa a a<x) (rsb b b<y) })
wfInd-ind₂ : ∀ {α β} {A : Set α} {_<_ : Rel A β}
→ (<-wf : WellFounded _<_)
→ ∀ {γ} {P : A → Set γ}
→ (R : ∀ x y → P x → P y → Set)
→ {f : ∀ x → (∀ y → y < x → P y) → P x}
→ (∀ x x′ g g′
→ (∀ y y′ y<x y′<x → R y y′ (g y y<x) (g′ y′ y′<x))
→ R x x′ (f x g) (f x′ g′))
→ {x x′ : A}
→ R x x′ (wfInd <-wf P f x) (wfInd <-wf P f x′)
wfInd-ind₂ <-wf {P = P} R {f} f-resp
= wfInd (×-wellFounded <-wf <-wf)
(λ { (x , x′) → R x x′ (wfInd <-wf P f x) (wfInd <-wf P f x′)})
(λ where
(x , y) rec
→ subst₂ (R x y)
(sym (wfInd-unfold <-wf P f x))
(sym (wfInd-unfold <-wf P f y))
(f-resp x y _ _ λ x′ y′ x′<x y′<y → rec (x′ , y′) (x′<x , y′<y)))
_