{-# OPTIONS --without-K #-}
module Model.Size where
open import Relation.Binary using (Rel ; Preorder ; IsPreorder)
import Data.Nat as ℕ
import Data.Nat.Induction as ℕ
import Data.Nat.Properties as ℕ
import Relation.Binary.Construct.On as On
open import Model.RGraph as RG using (RGraph)
open import Source.Size as S using (Δ ; Ω)
open import Source.Size.Substitution.Universe using (⟨_⟩ ; Sub⊢ᵤ)
open import Util.HoTT.HLevel
open import Util.Induction.WellFounded as WFInd using (Acc ; acc ; WellFounded)
open import Util.Prelude
import Source.Size.Substitution.Canonical as SC
import Source.Size.Substitution.Universe as S
open S.Ctx
open S.Size
open S.Sub
open S.Sub⊢ᵤ
open S.Var
open S._<_ hiding (<-trans)
infix 4 _<_ _≤_
private
variable
i j k : ℕ
data Size : Set where
zero+ : (i : ℕ) → Size
∞+ : (i : ℕ) → Size
variable
n m o : Size
nat : ℕ → Size
nat = zero+
abstract
zero+-inj : zero+ i ≡ zero+ j → i ≡ j
zero+-inj refl = refl
zero+-≡-canon : (p : zero+ i ≡ zero+ j) → p ≡ cong zero+ (zero+-inj p)
zero+-≡-canon refl = refl
∞+-inj : ∞+ i ≡ ∞+ j → i ≡ j
∞+-inj refl = refl
∞+-≡-canon : (p : ∞+ i ≡ ∞+ j) → p ≡ cong ∞+ (∞+-inj p)
∞+-≡-canon refl = refl
Size-IsSet : IsSet Size
Size-IsSet {zero+ i} {zero+ j} p refl
= trans (zero+-≡-canon p) (cong (cong zero+) (ℕ.≡-irrelevant _ _))
Size-IsSet {∞+ i} {∞+ j} p refl
= trans (∞+-≡-canon p) (cong (cong ∞+) (ℕ.≡-irrelevant _ _))
data _<_ : (n m : Size) → Set where
zero+ : (i<j : i ℕ.< j) → zero+ i < zero+ j
∞+ : (i<j : i ℕ.< j) → ∞+ i < ∞+ j
zero<∞ : zero+ i < ∞+ j
data _≤_ (n m : Size) : Set where
reflexive : n ≡ m → n ≤ m
<→≤ : n < m → n ≤ m
pattern ≤-refl = reflexive refl
abstract
<-trans : n < m → m < o → n < o
<-trans (zero+ i<j) (zero+ j<k) = zero+ (ℕ.<-trans i<j j<k)
<-trans (zero+ i<j) zero<∞ = zero<∞
<-trans (∞+ i<j) (∞+ j<k) = ∞+ (ℕ.<-trans i<j j<k)
<-trans zero<∞ (∞+ i<j) = zero<∞
≤→<→< : n ≤ m → m < o → n < o
≤→<→< ≤-refl m<o = m<o
≤→<→< (<→≤ n<m) m<o = <-trans n<m m<o
<→≤→< : n < m → m ≤ o → n < o
<→≤→< n<m ≤-refl = n<m
<→≤→< n<m (<→≤ m<o) = <-trans n<m m<o
≤-trans : n ≤ m → m ≤ o → n ≤ o
≤-trans n≤m ≤-refl = n≤m
≤-trans n≤m (<→≤ m<o) = <→≤ (≤→<→< n≤m m<o)
⟦zero⟧ ⟦∞⟧ : Size
⟦zero⟧ = zero+ 0
⟦∞⟧ = ∞+ 0
⟦suc⟧ : Size → Size
⟦suc⟧ (zero+ i) = zero+ (suc i)
⟦suc⟧ (∞+ i) = ∞+ (suc i)
abstract
⟦zero⟧<⟦suc⟧ : ⟦zero⟧ < ⟦suc⟧ n
⟦zero⟧<⟦suc⟧ {zero+ i} = zero+ (ℕ.s≤s ℕ.z≤n)
⟦zero⟧<⟦suc⟧ {∞+ i} = zero<∞
⟦zero⟧<⟦∞⟧ : ⟦zero⟧ < ⟦∞⟧
⟦zero⟧<⟦∞⟧ = zero<∞
⟦suc⟧<⟦suc⟧ : n < m → ⟦suc⟧ n < ⟦suc⟧ m
⟦suc⟧<⟦suc⟧ (zero+ i<j) = zero+ (ℕ.s≤s i<j)
⟦suc⟧<⟦suc⟧ (∞+ i<j) = ∞+ (ℕ.s≤s i<j)
⟦suc⟧<⟦suc⟧ zero<∞ = zero<∞
⟦suc⟧<⟦∞⟧ : n < ⟦∞⟧ → ⟦suc⟧ n < ⟦∞⟧
⟦suc⟧<⟦∞⟧ zero<∞ = zero<∞
<⟦suc⟧ : n < ⟦suc⟧ n
<⟦suc⟧ {zero+ i} = zero+ (ℕ.s≤s ℕ.≤-refl)
<⟦suc⟧ {∞+ i} = ∞+ (ℕ.s≤s ℕ.≤-refl)
Size< : Size → Set
Size< n = ∃[ m ] (m < n)
mutual
⟦_⟧Δ′ : S.Ctx → Set
⟦ [] ⟧Δ′ = ⊤
⟦ Δ ∙ n ⟧Δ′ = Σ[ δ ∈ ⟦ Δ ⟧Δ′ ] (Size< (⟦ n ⟧n′ δ))
⟦_⟧x′ : S.Var Δ → ⟦ Δ ⟧Δ′ → Size
⟦ zero ⟧x′ (δ , n , _) = n
⟦ suc x ⟧x′ (δ , _ , _) = ⟦ x ⟧x′ δ
⟦_⟧n′ : S.Size Δ → ⟦ Δ ⟧Δ′ → Size
⟦ var x ⟧n′ = ⟦ x ⟧x′
⟦ ∞ ⟧n′ _ = ⟦∞⟧
⟦ zero ⟧n′ _ = ⟦zero⟧
⟦ suc n ⟧n′ = ⟦suc⟧ ∘ ⟦ n ⟧n′
abstract
⟦wk⟧ : ∀ (n m : S.Size Δ) {δ} → ⟦ S.wk {n = n} m ⟧n′ δ ≡ ⟦ m ⟧n′ (proj₁ δ)
⟦wk⟧ n (var x) = refl
⟦wk⟧ n ∞ = refl
⟦wk⟧ n zero = refl
⟦wk⟧ n (suc m) = cong ⟦suc⟧ (⟦wk⟧ n m)
⟦<⟧ₓ : ∀ (x : S.Var Δ) {δ}
→ ⟦ x ⟧x′ δ < ⟦ S.bound x ⟧n′ δ
⟦<⟧ₓ {Δ ∙ n} zero {δ , m , m<n} = subst (m <_) (sym (⟦wk⟧ n n)) m<n
⟦<⟧ₓ {Δ ∙ n} (suc x) {δ , m , m<n}
= subst (⟦ x ⟧x′ δ <_) (sym (⟦wk⟧ n (S.bound x))) (⟦<⟧ₓ x)
⟦<⟧ : ∀ {n m : S.Size Δ} {δ}
→ n S.< m
→ ⟦ n ⟧n′ δ < ⟦ m ⟧n′ δ
⟦<⟧ (var {x = x} refl) = ⟦<⟧ₓ x
⟦<⟧ zero<suc = ⟦zero⟧<⟦suc⟧
⟦<⟧ zero<∞ = ⟦zero⟧<⟦∞⟧
⟦<⟧ (suc<suc n<m) = ⟦suc⟧<⟦suc⟧ (⟦<⟧ n<m)
⟦<⟧ (suc<∞ n<m) = ⟦suc⟧<⟦∞⟧ (⟦<⟧ n<m)
⟦<⟧ (S.<-trans n<m m<o) = <-trans (⟦<⟧ n<m) (⟦<⟧ m<o)
⟦<⟧ <suc = <⟦suc⟧
<-irrefl : ¬ n < n
<-irrefl {zero+ i} (zero+ i<i) = ℕ.<⇒≢ i<i refl
<-irrefl {∞+ i} (∞+ i<i) = ℕ.<⇒≢ i<i refl
≤-antisym : n ≤ m → m ≤ n → n ≡ m
≤-antisym ≤-refl m≤n = refl
≤-antisym (<→≤ n<m) m≤n = ⊥-elim (<-irrefl (<→≤→< n<m m≤n))
<-IsProp : IsProp (n < m)
<-IsProp (zero+ i<j) (zero+ i<j₁) = cong zero+ (ℕ.<-irrelevant _ _)
<-IsProp (∞+ i<j) (∞+ i<j₁) = cong ∞+ (ℕ.<-irrelevant _ _)
<-IsProp zero<∞ zero<∞ = refl
≤-IsProp : IsProp (n ≤ m)
≤-IsProp (reflexive p) (reflexive q) = cong reflexive (Size-IsSet _ _)
≤-IsProp ≤-refl (<→≤ q) = ⊥-elim (<-irrefl q)
≤-IsProp (<→≤ p) ≤-refl = ⊥-elim (<-irrefl p)
≤-IsProp (<→≤ p) (<→≤ q) = cong <→≤ (<-IsProp p q)
Size<-≡⁺ : (m k : Size< n) → proj₁ m ≡ proj₁ k → m ≡ k
Size<-≡⁺ (m , _) (k , _) refl = cong (m ,_) (<-IsProp _ _)
Size<-IsSet : ∀ {n} → IsSet (Size< n)
Size<-IsSet = Σ-IsSet Size-IsSet λ _ → IsOfHLevel-suc 1 <-IsProp
⟦Δ⟧-IsSet : ∀ Δ → IsSet ⟦ Δ ⟧Δ′
⟦Δ⟧-IsSet [] = ⊤-IsSet
⟦Δ⟧-IsSet (Δ ∙ n) = Σ-IsSet (⟦Δ⟧-IsSet Δ) λ _ → Size<-IsSet
⟦Δ⟧-HSet : S.Ctx → HSet 0ℓ
⟦Δ⟧-HSet Δ = HLevel⁺ _ (⟦Δ⟧-IsSet Δ)
abstract
⟦Δ∙n⟧-≡⁺ : ∀ Δ (n : S.Size Δ) {δ δ′ : ⟦ Δ ⟧Δ′} {m m′ : Size}
→ (m<n : m < ⟦ n ⟧n′ δ)
→ (m′<n : m′ < ⟦ n ⟧n′ δ′)
→ δ ≡ δ′
→ m ≡ m′
→ (δ , m , m<n) ≡ (δ′ , m′ , m′<n)
⟦Δ∙n⟧-≡⁺ Δ n {δ} _ _ refl eq₂
= cong (δ ,_) (Size<-≡⁺ _ _ eq₂)
zero+-<ℕ-acc→<-acc : Acc ℕ._<_ i → Acc _<_ (zero+ i)
zero+-<ℕ-acc→<-acc (acc rs) = acc λ where
(zero+ i) (zero+ i<j) → zero+-<ℕ-acc→<-acc (rs i i<j)
zero+-acc : Acc _<_ (zero+ i)
zero+-acc = zero+-<ℕ-acc→<-acc (ℕ.<-wellFounded _)
∞+-<ℕ-acc→<-acc : Acc ℕ._<_ i → Acc _<_ (∞+ i)
∞+-<ℕ-acc→<-acc (acc rs) = acc λ where
(∞+ i) (∞+ i<j) → ∞+-<ℕ-acc→<-acc (rs i i<j)
(zero+ i) zero<∞ → zero+-acc
∞+-acc : Acc _<_ (∞+ i)
∞+-acc = ∞+-<ℕ-acc→<-acc (ℕ.<-wellFounded _)
<-wf : WellFounded _<_
<-wf m = acc λ where
_ (zero+ i<j) → zero+-acc
_ (∞+ i<j) → ∞+-acc
_ zero<∞ → zero+-acc
open WFInd.Build <-wf public using () renaming
( wfInd to <-ind
; wfRec to <-rec
; wfInd-unfold to <-ind-unfold
; wfRec-unfold to <-rec-unfold
; wfInd-ind to <-ind-ind
; wfIndΣ to <-indΣ
; wfIndΣ-unfold to <-indΣ-unfold
; wfIndΣ′ to <-indΣ′
)
<-ind-ind₂ = WFInd.wfInd-ind₂ <-wf
mutual
⟦_⟧σ′ : ∀ {σ} → σ ∶ Δ ⇒ᵤ Ω → ⟦ Δ ⟧Δ′ → ⟦ Ω ⟧Δ′
⟦ Id ⟧σ′ δ = δ
⟦ comp σ τ ⟧σ′ δ = ⟦ τ ⟧σ′ (⟦ σ ⟧σ′ δ)
⟦ Wk ⟧σ′ (δ , m) = δ
⟦ Lift {n = n} σ refl ⟧σ′ (δ , m , m<n)
= ⟦ σ ⟧σ′ δ , m , subst (m <_) (⟦sub⟧ σ n) m<n
⟦ Sing {n = n} n<m ⟧σ′ δ = δ , ⟦ n ⟧n′ δ , ⟦<⟧ n<m
⟦ Skip ⟧σ′ ((δ , m , m<n) , k , k<m) = δ , k , <-trans k<m m<n
abstract
⟦subV′⟧ : ∀ {σ} (⊢σ : σ ∶ Δ ⇒ᵤ Ω) (x : S.Var Ω) {δ}
→ ⟦ S.subV′ σ x ⟧n′ δ ≡ ⟦ x ⟧x′ (⟦ ⊢σ ⟧σ′ δ)
⟦subV′⟧ Id x = refl
⟦subV′⟧ (comp {σ = σ} {τ = τ} ⊢σ ⊢τ) x
= trans (⟦sub′⟧ ⊢σ (S.subV′ τ x)) (⟦subV′⟧ ⊢τ x)
⟦subV′⟧ Wk x = refl
⟦subV′⟧ (Lift ⊢σ refl) zero {δ , m} = refl
⟦subV′⟧ (Lift {σ = σ} {n = n} ⊢σ refl) (suc x) {δ , m}
rewrite ⟦wk⟧ (S.sub σ n) (S.subV′ σ x) {δ , m}
= ⟦subV′⟧ ⊢σ x
⟦subV′⟧ (Sing n<m) zero = refl
⟦subV′⟧ (Sing n<m) (suc x) = refl
⟦subV′⟧ Skip zero = refl
⟦subV′⟧ Skip (suc x) = refl
⟦sub′⟧ : ∀ {σ} (⊢σ : σ ∶ Δ ⇒ᵤ Ω) (n : S.Size Ω) {δ}
→ ⟦ S.sub′ σ n ⟧n′ δ ≡ ⟦ n ⟧n′ (⟦ ⊢σ ⟧σ′ δ)
⟦sub′⟧ σ (var x) = ⟦subV′⟧ σ x
⟦sub′⟧ σ ∞ = refl
⟦sub′⟧ σ zero = refl
⟦sub′⟧ σ (suc n) = cong ⟦suc⟧ (⟦sub′⟧ σ n)
⟦sub⟧ : ∀ {σ} (⊢σ : σ ∶ Δ ⇒ᵤ Ω) (n : S.Size Ω) {δ}
→ ⟦ S.sub σ n ⟧n′ δ ≡ ⟦ n ⟧n′ (⟦ ⊢σ ⟧σ′ δ)
⟦sub⟧ {σ = σ} ⊢σ n {δ}
= trans (cong (λ k → ⟦ k ⟧n′ δ) (sym (S.sub′≡sub σ n))) (⟦sub′⟧ ⊢σ n)
abstract
⟦subV⟧ : ∀ {σ} (⊢σ : σ ∶ Δ ⇒ᵤ Ω) (x : S.Var Ω) {δ}
→ ⟦ S.subV σ x ⟧n′ δ ≡ ⟦ x ⟧x′ (⟦ ⊢σ ⟧σ′ δ)
⟦subV⟧ {σ = σ} ⊢σ x {δ}
= trans (cong (λ k → ⟦ k ⟧n′ δ) (sym (S.subV′≡subV σ x))) (⟦subV′⟧ ⊢σ x)
⟦⟧σ-param : ∀ {σ} (p q : σ ∶ Δ ⇒ᵤ Ω) {δ}
→ ⟦ p ⟧σ′ δ ≡ ⟦ q ⟧σ′ δ
⟦⟧σ-param Id Id = refl
⟦⟧σ-param (comp p p′) (comp q q′)
= trans (⟦⟧σ-param p′ q′) (cong (⟦ q′ ⟧σ′) (⟦⟧σ-param p q))
⟦⟧σ-param Wk Wk = refl
⟦⟧σ-param {Ω = Ω ∙ m} (Lift p refl) (Lift q m≡n[σ]₁)
rewrite S.Size-IsSet m≡n[σ]₁ refl
= ⟦Δ∙n⟧-≡⁺ Ω m _ _ (⟦⟧σ-param p q) refl
⟦⟧σ-param {Δ = Δ} {σ = Sing {m = m} n} (Sing n<m) (Sing n<m₁)
= ⟦Δ∙n⟧-≡⁺ Δ m (⟦<⟧ n<m) (⟦<⟧ n<m₁) refl refl
⟦⟧σ-param Skip Skip = refl
⟦_⟧Δ : S.Ctx → RGraph
⟦ Δ ⟧Δ = record
{ ObjHSet = ⟦Δ⟧-HSet Δ
; eqHProp = λ _ _ → ⊤-HProp
}
Sizes : RGraph
Sizes = record
{ ObjHSet = HLevel⁺ Size Size-IsSet
; eqHProp = λ _ _ → ⊤-HProp
}
⟦_⟧n : ∀ {Δ} (n : S.Size Δ) → ⟦ Δ ⟧Δ RG.⇒ Sizes
⟦ n ⟧n = record
{ fobj = ⟦ n ⟧n′
}
⟦_⟧σ : ∀ {Δ Ω σ} → σ ∶ Δ ⇒ᵤ Ω → ⟦ Δ ⟧Δ RG.⇒ ⟦ Ω ⟧Δ
⟦ σ ⟧σ = record
{ fobj = ⟦ σ ⟧σ′
}
data _≤′_ : (n m : Size) → Set where
zero+ : (i≤j : i ℕ.≤ j) → zero+ i ≤′ zero+ j
∞+ : (i≤j : i ℕ.≤ j) → ∞+ i ≤′ ∞+ j
zero<∞ : zero+ i ≤′ ∞+ j
abstract
≤→≤′ : n ≤ m → n ≤′ m
≤→≤′ {zero+ i} ≤-refl = zero+ ℕ.≤-refl
≤→≤′ {∞+ i} ≤-refl = ∞+ ℕ.≤-refl
≤→≤′ (<→≤ (zero+ i<j)) = zero+ (ℕ.<⇒≤ i<j)
≤→≤′ (<→≤ (∞+ i<j)) = ∞+ (ℕ.<⇒≤ i<j)
≤→≤′ (<→≤ zero<∞) = zero<∞
≤′→≤ : n ≤′ m → n ≤ m
≤′→≤ (zero+ i≤j) with ℕ.≤⇒≤′ i≤j
... | ℕ.≤′-refl = ≤-refl
... | ℕ.≤′-step i≤′j = <→≤ (zero+ (ℕ.s≤s (ℕ.≤′⇒≤ i≤′j)))
≤′→≤ (∞+ i≤j) with ℕ.≤⇒≤′ i≤j
... | ℕ.≤′-refl = ≤-refl
... | ℕ.≤′-step i≤′j = <→≤ (∞+ (ℕ.s≤s (ℕ.≤′⇒≤ i≤′j)))
≤′→≤ zero<∞ = <→≤ zero<∞
0≤n : ⟦zero⟧ ≤ n
0≤n {zero+ zero} = ≤-refl
0≤n {zero+ (suc i)} = <→≤ (zero+ (ℕ.s≤s ℕ.z≤n))
0≤n {∞+ i} = <→≤ zero<∞
n<m→Sn≤m : n < m → ⟦suc⟧ n ≤ m
n<m→Sn≤m (zero+ (ℕ.s≤s i≤j)) = ≤′→≤ (zero+ (ℕ.s≤s i≤j))
n<m→Sn≤m (∞+ (ℕ.s≤s i≤j)) = ≤′→≤ (∞+ (ℕ.s≤s i≤j))
n<m→Sn≤m zero<∞ = <→≤ zero<∞
Sn≤m→n<m : ⟦suc⟧ n ≤ m → n < m
Sn≤m→n<m ≤-refl = <⟦suc⟧
Sn≤m→n<m (<→≤ Sn<m) = <-trans <⟦suc⟧ Sn<m